3,230 research outputs found

    A DEM method for simulating rubber tyres

    Get PDF
    Recently, recycled rubber tyres were found to be an economical and environmental-friendly reinforcement material in geotechnical engineering. Although the use of rubber tyre-reinforced soil has become increasingly popular, there is still a lack of a robust and systematic method to model rubber tyres when using the discrete-element method (DEM) to investigate the stress-strain responses. In this paper, DEM rubber tyres are simulated by bonding regular-packed balls, and numerically tested under tensile force using the particle flow code in three dimensions. When comparing the effects of different packings on the sample, using Young's modulus and Poisson's ratio, it was found that only body-centred-cubic packing could achieve a Poisson's ratio of 0·5 representing no volume change during the deformation of rubber. The difference between uniaxial compression and tension simulations was also compared as well as the influences of particle overlapping, particle radius and sample aspect ratio on the mechanical response of the tyre model. Finally, the DEM parameters were set to match the experimental Young's modulus data. This proposed DEM rubber tyre strips model could be a basis to study other rubber reinforcements such as tyre chips and shreds, irregular rubber buffings and granulated rubber

    DEM study on the mechanical behaviours of methane hydrate sediments: hydrate growth patterns and hydrate bonding strength

    Get PDF
    Natural methane hydrate soil sediments attract worldwide interest, as there is huge commercial potential in the immense global deposits of natural gas hydrate that lies under deep seabeds and permafrost regions. However, the geomechanical behaviour of methane hydrate soil is poorly understood. In this study, Discrete Element Method (DEM) was employed to provide insights into the mechanical behaviour of hydrate-bearing sediments with different hydrate patterns in the pores: the pore-filling case and the cementation case. A series of drained triaxial compressional tests were performed, and the results were analyzed in terms of stress-strain response and volumetric response. In both pore-filling and cementation cases, the presence of hydrates caused an increase in the strength and dilative tendency of the simulated hydrate-bearing soil samples, and the strength and dilation both increased with hydrate saturation (or amount of hydrates in the pores). In addition, at the same hydrate saturation, the cementation case showed higher values of strength and dilation than the pore-filling case. In the cementation case, two typical hydrate growth patterns were considered: soil surface coating (hydrates form around the grain surface) and soil-soil contact gathering (hydrates preferentially form at the grain contacts). Results showed that hydrate growth patterns greatly influenced the mechanical behaviour of the simulated hydrate-bearing samples, especially when the bonding strength and hydrate saturation were increased. In both patterns, strength and dilation were enhanced as bonding strength increased, and the enhancement was greater in the soil-soil contact model than in the soil surface gathering model. At high hydrate saturation, as bonding strength increased, a larger axial strain was needed to reach the peak strength, and the development of dilation was delayed

    Differential subcellular localization and activity of kelch repeat proteins KLHDC1 and KLHDC2.

    Get PDF
    We have previously identified and characterized human KLHDC2/HCLP-1, a kelch repeat protein that interacts with and inhibits transcription factor LZIP. In this study, we identified and characterized a paralog of KLHDC2 called KLHDC1. KLHDC1 and KLHDC2 share about 50% identity at the level of amino acid sequence and both gene loci localize to human chromosome 14q21.3. This cluster of KLHDC1 and KLHDC2 genes is highly conserved in vertebrates ranging from pufferfish to human. Both genes are expressed highly in skeletal muscle, but weakly in various other tissues. While KLHDC2 was predominantly found in the nucleus, KLHDC1 is a cytoplasmic protein. Neither KLHDC1 nor KLHDC2 binds to actin. In addition, KLHDC1 was unable to inhibit LZIP/CREB3-mediated transcriptional activation. Thus, KLHDC1 and KLHDC2 have differential localization and activity in cultured mammalian cells.postprin

    p38 Mapk signal pathway involved in anti-inflammatory effect of chaihu-shugan-san and shen-ling-bai-zhu-san on hepatocyte in non-alcoholic steatohepatitis rats

    Get PDF
    Background: Traditional Chinese Medicine (TCM), has over thousands-of-years history of use. Chaihu-Shugan-San (CSS), and Shen-ling-bai-zhu-San (SLBZS), are famous traditional Chinese herbal medicine formulas, which have been used in China, for the treatment of many chronic diseases.Materials and Methods:This study investigated the anti-inflammatory effects of CSS and SLBZS on signaling molecules involved in p38 mitogen-activated protein kinase (p38 MAPK), pathway on hepatocytes of non-alcoholic steatohepatitis (NASH), rats induced by high fat diet. SD male rats were randomly divided into 8 groups: negative control group, model control group, high (9.6g/kg/day)/low (3.2g/kg/day)-dose CSS group, high (30g/kg/day)/low (10g/kg/day)-dose SLBZS group, high (39.6g/kg/day)/low (13.2g/kg/day)-dose integrated group. The rats of NASH model were induced by feeding a high-fat diet. After 16, wks, Hepatocytes were isolated from 6, rats in each group by collagenase perfusion. The liver histopathological changes and serum inflammatory cytokines TNF-α, IL-6 were determined. The proteins of TLR4,  phosphor-p38 MAPK and p38 MAPK involved in p38 MAPK signal pathway were assayed.Results: The statistical data indicated the NASH model rats reproduced typical histopathological features of NASH in human. CSS and SLBZS ameliorated lipid metabolic disturbance, attenuated NASH progression, decreased the levels of TNF-α and IL-6 in serum, as well as inhibited TLR4 protein expression, p38 MAPK phosphorylation, and activation of p38 MAPK. In conclusion, CSS and SLBZS might work as a significant anti-inflammatory effect on hepatocyte of NASH by inhibiting the activation of TLR4, p-p38 MAPK and p38 MAPK involved in p38 MAPK signal pathway.Conclusion: To some extent, CSS and SLBZS may be a potential alternative and complementary medicine to protect against liver injury, alleviate the inflammation reaction, moderate NASH progression.Key words: p38 mitogen-activated protein kinase; Toll like receptor 4; Hepatocytes; Non-alcoholic Steatohepatitis; Traditional Chinese medicine

    PAK4 phosphorylates p53 at serine 215 to promote liver cancer metastasis

    Get PDF
    PAK4 kinase contributes to signaling pathways controlling cancer cell transformation, invasion and survival, but its clinicopathological impact has begun to emerge only recently. Here we report that PAK4 overexpression in hepatocellular carcinoma (HCC) conveys aggressive metastatic properties. A novel nuclear splice isoform of PAK4 lacking exon 2 sequences was isolated as part of our studies. By stably overexpressing or silencing PAK4 in HCC cells we showed that it was critical for their migration. Mechanistic investigations in this setting revealed that PAK4 directly phosphorylated p53 at S215, which not only attenuated transcriptional transactivation activity but also inhibited p53-mediated suppression of HCC cell invasion. Taken together, our results showed how PAK4 overexpression in HCC promotes metastatic invasion by regulating p53 phosphorylation.postprin

    Distinct-element analysis of an offshore wind turbine monopile under cyclic lateral load

    Get PDF
    This paper presents a distinct-element method study of the dynamic behaviour of a rigid bored monopile for an offshore wind turbine foundation subject to force-controlled cyclic lateral loads. A two-dimensional model of a granular assembly was developed using the particle flow code. The model was consolidated under high gravity to simulate existing centrifuge model tests. The simulation results showed great similarity to the published experimental measurements in terms of the relationship between loading and the normalised lateral displacement. The dependency of the accumulated rotation, lateral deflection and stiffness on the two key loading characteristics, loading magnitude and direction, were analysed. Particle-scale information was employed to reveal the micromechanics of these dynamic behaviours. It was seen that relative particle displacement fields provided clear micro-scale evidence of the development of shear zones induced by the lateral cyclic loading of the pile. Meanwhile, local void densification was also observed through particle movements

    Discrete element modelling of methane hydrate soil sediments using elongated soil particles

    Get PDF
    In this discrete element modelling research, triaxial compression tests of particle assemblies were simulated to study the mechanical behaviour of methane hydrate sediments with two different hydrate formation patterns: pore-filling and cementation. The soil particles were modelled using spherical or elongated particles (two aspect ratios 1.5 and 2.0). Hydrates were modelled as smaller particles and were placed either inside the pores in a random manner (the pore-filling case) or around the soil particle contacts (the cementation case). Compared to the pure soil samples, the hydrates essentially influenced the mechanical behaviour of the hydrate-bearing soil samples, and the behaviours varied due to the different hydrate growth patterns. The behaviour with elongated soil particles is much closer to that of the natural hydrate-bearing sandy sediments retrieved from the Nankai Trough than the behaviour with spherical particles. The observed macroscopic strength behaviour is also explained by the microscopic contact-type related contributions (soil-soil contact, soil-hydrate contact and hydrate-hydrate contact) to the deviatoric stresses

    Proteome profiling of cadmium-induced apoptosis by antibody array analyses in human bronchial epithelial cells

    Get PDF
    Protein array technology is a powerful platform for the simultaneous determination of the expression levels of a number of proteins as well as post-translational modifications such as phosphorylation. Here, we screen and report for the first time, the dominant signaling cascades and apoptotic mediators during the course of cadmium (Cd)-induced cytotoxicity in human bronchial epithelial cells (BEAS-2B) by antibody array analyses. Proteins from control and Cd-treated cells were captured on Proteome Profiler™ Arrays for the parallel determination of the relative levels of protein phosphorylation and proteins associated with apoptosis. Our results indicated that the p38 MAPK- and JNK-related signal transduction pathways were dramatically activated by Cd treatment. Cd potently stimulates the phosphorylations of p38α (MAPK14), JNK1/2 (MAPK8/9), and JUN; while the phosphorylations of Akt1, ERK1/2 (MAPK3/1), GSK3β, and mTOR were suppressed. Moreover, there was an induction of proapoptotic protein BAX, release of cytochrome c (CYCS) from mitochondria, activation of caspase-3/9 (CASP3/9); as well as decreased expression of cell cycle checkpoint proteins (TP53, p21, and p27) and several inhibitors of apoptosis proteins (IAPs) [including cIAP-1/2 (BIRC2/3), XIAP (BIRC4), and survivin (BIRC5)]. Pretreatment of cells with the thiol antioxidant glutathione or p38 MAPK/JNK inhibitors before Cd treatment effectively abrogated ROS activation of p38 MAPK/JNK pathways and apoptosis-related proteins. Taken together, our results demonstrate that Cd causes oxidative stress-induced apoptosis; and the p38 MAPK/JNK and mitochondrial pathways are more importantly participated for signal transduction and the induction of apoptosis in Cd-exposed human lung cells.published_or_final_versio

    SmartTennisTV: Automatic indexing of tennis videos

    Full text link
    In this paper, we demonstrate a score based indexing approach for tennis videos. Given a broadcast tennis video (BTV), we index all the video segments with their scores to create a navigable and searchable match. Our approach temporally segments the rallies in the video and then recognizes the scores from each of the segments, before refining the scores using the knowledge of the tennis scoring system. We finally build an interface to effortlessly retrieve and view the relevant video segments by also automatically tagging the segmented rallies with human accessible tags such as 'fault' and 'deuce'. The efficiency of our approach is demonstrated on BTV's from two major tennis tournaments.Comment: 10 pages, 4 figures, NCVPRIPG 2017 Accepted Paper (Best Paper Award Winner

    Effects of voluntary running on plasma levels of neurotrophins, hippocampal cell proliferation and learning and memory in stressed rats

    Get PDF
    Previous studies have shown that a 2-week treatment with 40mg/kg corticosterone (CORT) in rats suppresses hippocampal neurogenesis and decreases hippocampal brain-derived neurotrophic factor (BDNF) levels and impairs spatial learning, all of which could be counteracted by voluntary wheel running. BDNF and insulin-like growth factor (IGF-1) have been suggested to mediate physical exercise-enhanced hippocampal neurogenesis and cognition. Here we examined whether such running-elicited benefits were accompanied by corresponding changes of peripheral BDNF and IGF-1 levels in a rat model of stress. We examined the effects of acute (5days) and chronic (4weeks) treatment with CORT and/or wheel running on (1) hippocampal cell proliferation, (2) spatial learning and memory and (3) plasma levels of BDNF and IGF-1. Acute CORT treatment improved spatial learning without altered cell proliferation compared to vehicle treatment. Acute CORT-treated non-runners showed an increased trend in plasma BDNF levels together with a significant increase in hippocampal BDNF levels. Acute running showed no effect on cognition, cell proliferation and peripheral BDNF and IGF-1 levels. Conversely, chronic CORT treatment in non-runners significantly impaired spatial learning and suppressed cell proliferation in association with a decreased trend in plasma BDNF level and a significant increase in hippocampal BDNF levels. Running counteracted cognitive deficit and restored hippocampal cell proliferation following chronic CORT treatment; but without corresponding changes in plasma BDNF and IGF-1 levels. The results suggest that the beneficial effects of acute stress on cognitive improvement may be mediated by BDNF-enhanced synaptic plasticity that is hippocampal cell proliferation-independent, whereas chronic stress may impair cognition by decreasing hippocampal cell proliferation and BDNF levels. Furthermore, the results indicate a trend in changes of plasma BDNF levels associated with a significant alteration in hippocampal levels, suggesting that treatment with running/CORT for 4 weeks may induce a change in central levels of hippocampal BDNF level, which may not lead to a significant change in peripheral levels.postprin
    corecore