2,222 research outputs found

    Equivalent stress block for normal-strength concrete incorporating strain gradient effect

    Get PDF
    To account for the different behaviours of concrete under uniaxial compression and bending in the flexural strength design of reinforced concrete (RC) members, the stress-strain curve of concrete is normally scaled down so that the adopted maximum concrete stress in flexural members is less than the uniaxial strength. However, it was found from previous experimental research that the use of a smaller maximum concrete stress would underestimate the flexural strength of RC beams and columns. To investigate the effect of strain gradient on the maximum concrete stress developed in flexure, a total of 12 plain concrete and RC inverted T-shaped specimens were fabricated and tested under concentric and eccentric loads separately. The maximum concrete stress developed in the eccentric specimens was determined by modifying the concrete stress-strain curve obtained from the counterpart concentric specimens based on axial force and moment equilibriums. The test results revealed that the maximum concrete stress increases with strain gradient up to a certain maximum value. A formula was developed to correlate the maximum concrete stress to strain gradient. A pair of equivalent rectangular concrete stress block parameters that incorporate the effects of strain gradient was proposed for flexural strength design of RC members. © 2012 Thomas Telford Ltd.published_or_final_versio

    Computational network design from functional specifications

    Get PDF
    Connectivity and layout of underlying networks largely determine agent behavior and usage in many environments. For example, transportation networks determine the flow of traffic in a neighborhood, whereas building floorplans determine the flow of people in a workspace. Designing such networks from scratch is challenging as even local network changes can have large global effects. We investigate how to computationally create networks starting from only high-level functional specifications. Such specifications can be in the form of network density, travel time versus network length, traffic type, destination location, etc. We propose an integer programming-based approach that guarantees that the resultant networks are valid by fulfilling all the specified hard constraints and that they score favorably in terms of the objective function. We evaluate our algorithm in two different design settings, street layout and floorplans to demonstrate that diverse networks can emerge purely from high-level functional specifications

    A current transformer energy harvester with stable output based on the saturable magnetic core

    Get PDF
    One of the major bottlenecks of the traditional current transformer energy harvester (CTEH) is the instable output induced by the wide-range variations of the current in transmission lines. In this work, a novel CTEH capable of generating a stable output is demonstrated by using a core fabricated with saturable magnetic material. The stable output of the CTEH is enabled by the constant voltage-time product in its saturable characteristic. The proposed CTEH is implemented with a resistive load representing the load of electronic devices. When the current in the primary side of the CTEH's increases from 1 to 1000 A, the maximum power on the load can reach about 0.5 W, demonstrating the feasibility of using the CTEH with the saturable magnetic core as a quasi-stable power supply

    THE JouasaAL OF PHARMACOLOGY

    Get PDF

    Imaging the homogeneous nucleation during the melting of superheated colloidal crystals

    Get PDF
    The nucleation process is crucial to many phase transitions, but its kinetics are difficult to predict and measure. We superheated and melted the interior of thermal-sensitive colloidal crystals and investigated by means of video microscopy the homogeneous melting at single-particle resolution. The observed nucleation precursor was local particle-exchange loops surrounded by particles with large displacement amplitudes rather than any defects. The critical size, incubation time, and shape and size evolutions of the nucleus were measured. They deviate from the classical nucleation theory under strong superheating, mainly because of the coalescence of nuclei. The superheat limit agrees with the measured Born and Lindemann instabilities

    Study of transforming growth factor alpha for the maintenance of human embryonic stem cells

    Get PDF
    Human embryonic stem cells (hESCs) have great potential for regenerative medicine as they have selfregenerative and pluripotent properties. Feeder cells or their conditioned medium are required for the maintenance of hESC in the undifferentiated state. Feeder cells have been postulated to produce growth factors and extracellular molecules for maintaining hESC in culture. The present study has aimed at identifying these molecules. The gene expression of supportive feeder cells, namely human foreskin fibroblast (hFF-1) and non-supportive human lung fibroblast (WI-38) was analyzed by microarray and 445 genes were found to be differentially expressed. Gene ontology analysis showed that 20.9% and 15.5% of the products of these genes belonged to the extracellular region and regulation of transcription activity, respectively. After validation of selected differentially expressed genes in both human and mouse feeder cells, transforming growth factor a (TGFa) was chosen for functional study. The results demonstrated that knockdown or protein neutralization of TGFa in hFF-1 led to increased expression of early differentiation markers and lower attachment rates of hESC. More importantly, TGFa maintained pluripotent gene expression levels, attachment rates and pluripotency by the in vitro differentiation of H9 under non-supportive conditions. TGFa treatment activated the p44/42MAPK pathway but not the PI3K/Akt pathway. In addition, TGFa treatment increased the expression of pluripotent markers, NANOG and SSEA-3 but had no effects on the proliferation of hESCs. This study of the functional role of TGFa provides insights for the development of clinical grade hESCs for therapeutic applications. © The Author(s) 2012. © Springer-Verlag 2012.published_or_final_versio

    Ultra-low carrier concentration and surface dominant transport in Sb-doped Bi2Se3 topological insulator nanoribbons

    Full text link
    A topological insulator is a new state of matter, possessing gapless spin-locking surface states across the bulk band gap which has created new opportunities from novel electronics to energy conversion. However, the large concentration of bulk residual carriers has been a major challenge for revealing the property of the topological surface state via electron transport measurement. Here we report surface state dominated transport in Sb-doped Bi2Se3 nanoribbons with very low bulk electron concentrations. In the nanoribbons with sub-10nm thickness protected by a ZnO layer, we demonstrate complete control of their top and bottom surfaces near the Dirac point, achieving the lowest carrier concentration of 2x10^11/cm2 reported in three-dimensional (3D) topological insulators. The Sb-doped Bi2Se3 nanostructures provide an attractive materials platform to study fundamental physics in topological insulators, as well as future applications.Comment: 5 pages, 4 figures, 1 tabl

    Band structure engineering in (Bi1-xSbx)2Te3 ternary topological insulators

    Full text link
    Three-dimensional (3D) topological insulators (TI) are novel quantum materials with insulating bulk and topologically protected metallic surfaces with Dirac-like band structure. The spin-helical Dirac surface states are expected to host exotic topological quantum effects and find applications in spintronics and quantum computation. The experimental realization of these ideas requires fabrication of versatile devices based on bulk-insulating TIs with tunable surface states. The main challenge facing the current TI materials exemplified by Bi2Se3 and Bi2Te3 is the significant bulk conduction, which remains unsolved despite extensive efforts involving nanostructuring, chemical doping and electrical gating. Here we report a novel approach for engineering the band structure of TIs by molecular beam epitaxy (MBE) growth of (Bi1-xSbx)2Te3 ternary compounds. Angle-resolved photoemission spectroscopy (ARPES) and transport measurements show that the topological surface states exist over the entire composition range of (Bi1-xSbx)2Te3 (x = 0 to 1), indicating the robustness of bulk Z2 topology. Most remarkably, the systematic band engineering leads to ideal TIs with truly insulating bulk and tunable surface state across the Dirac point that behave like one quarter of graphene. This work demonstrates a new route to achieving intrinsic quantum transport of the topological surface states and designing conceptually new TI devices with well-established semiconductor technology.Comment: Minor changes in title, text and figures. Supplementary information adde

    Two-dimensional Dirac fermions in a topological insulator: transport in the quantum limit

    Full text link
    Pulsed magnetic fields of up to 55T are used to investigate the transport properties of the topological insulator Bi_2Se_3 in the extreme quantum limit. For samples with a bulk carrier density of n = 2.9\times10^16cm^-3, the lowest Landau level of the bulk 3D Fermi surface is reached by a field of 4T. For fields well beyond this limit, Shubnikov-de Haas oscillations arising from quantization of the 2D surface state are observed, with the \nu =1 Landau level attained by a field of 35T. These measurements reveal the presence of additional oscillations which occur at fields corresponding to simple rational fractions of the integer Landau indices.Comment: 5 pages, 4 figure

    Aharonov-Bohm interference in topological insulator nanoribbons

    Full text link
    Topological insulators represent novel phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport measurements. Recently, Bi2Se3 and related materials have been proposed as three-dimensional topological insulators with a single Dirac cone on the surface and verified by angle-resolved photoemission spectroscopy experiments. Here, we show unambiguous transport evidence of topological surface states through periodic quantum interference effects in layered single-crystalline Bi2Se3 nanoribbons. Pronounced Aharonov-Bohm oscillations in the magnetoresistance clearly demonstrate the coverage of two-dimensional electrons on the entire surface, as expected from the topological nature of the surface states. The dominance of the primary h/e oscillation and its temperature dependence demonstrate the robustness of these electronic states. Our results suggest that topological insulator nanoribbons afford novel promising materials for future spintronic devices at room temperature.Comment: 5 pages, 4 figures, RevTex forma
    corecore