2 research outputs found
Long transients in discontinuous time-discrete models of population dynamics
Traditionally, mathematical modelling of population dynamics was focused on long-term, asymptotic behaviour (systems attractors), whereas the effects of transient regimes were largely disregarded. However, recently there has been a growing appreciation of the role of transients both in empirical ecology and theoretical studies. Among the main challenges are identification of the mechanisms triggering transients in various dynamical systems and understanding of the corresponding scaling law of the transient's lifetime; the latter is of a vital practical importance for long-term ecological forecasting and regime shifts anticipation. In this study, we reveal and investigate various patterns of long transients occurring in two generic time-discrete population models which are mathematically described by discontinuous (piece-wise) maps. In particular, we consider a single-species population model and a predator–prey system, in each model we assume that the dispersal of species at the end of each season is density dependent. For both models, we demonstrate transients due to crawl-by dynamics, chaotic repellers, chaotic saddles, ghost attractors, and a rich variety of intermittent regimes. For each type of transient, we investigate the corresponding scaling law of the transient's lifetime. We explore the space of key model parameters, to find where particular types of long transients can be expected, and we show that long transients are omnipresent since they can be observed within a wide range of model parameters. We also reveal the possibility of complex patterns occurring as a cascade of transients of different types. We also considered a stochastic version of the model where some parameters exhibit random fluctuations. We show that stochasticity can reduce, extend or produce new patterns of long transients. We conclude that the discontinuity in population models significantly facilitates the emergence of long transients by creating new types and increasing parameter domains of the corresponding transient dynamics. Another important conclusion is that the asymptotic regime of population dynamics is hardly possible to predict based on a finite time course of species densities, which is crucial for ecosystem management and decision making
Long transients in ecology: Theory and applications
This paper discusses the recent progress in understanding the properties of transient dynamics in complex ecological systems. Predicting long-term trends as well as sudden changes and regime shifts in ecosystems dynamics is a major issue for ecology as such changes often result in population collapse and extinctions. Analysis of population dynamics has traditionally been focused on their long-term, asymptotic behavior whilst largely disregarding the effect of transients. However, there is a growing understanding that in ecosystems the asymptotic behavior is rarely seen. A big new challenge for theoretical and empirical ecology is to understand the implications of long transients. It is believed that the identification of the corresponding mechanisms along with the knowledge of scaling laws of the transient's lifetime should substantially improve the quality of long-term forecasting and crisis anticipation. Although transient dynamics have received considerable attention in physical literature, research into ecological transients is in its infancy and systematic studies are lacking. This text aims to partially bridge this gap and facilitate further progress in quantitative analysis of long transients in ecology. By revisiting and critically examining a broad variety of mathematical models used in ecological applications as well as empirical facts, we reveal several main mechanisms leading to the emergence of long transients and hence lays the basis for a unifying theory