226 research outputs found

    Harper-Hofstadter problem for 2D electron gas with k{\bf k}-linear Rashba spin-orbit coupling

    Full text link
    The Harper-Hofstadter problem for two-dimensional electron gas with Rashba spin-orbit coupling subject to periodic potential and perpendicular magnetic field is studied analytically and numerically. The butterfly-like energy spectrum, spinor wave functions as well as the spin density and average spin polarization are calculated for actual parameters of semiconductor structure. Our calculations show that in two-dimensional electron gas subject to periodic potential and uniform magnetic field the effects of energy spectrum splitting caused by large spin-orbit Rashba coupling can be observed experimentally.Comment: 8 pages, 6 figures. submitted to Europhys. Letter

    Evanescent states in 2D electron systems with spin-orbit interaction and spin-dependent transmission through a barrier

    Full text link
    We find that the total spectrum of electron states in a bounded 2D electron gas with spin-orbit interaction contains two types of evanescent states lying in different energy ranges. The first-type states fill in a gap, which opens in the band of propagating spin-splitted states if tangential momentum is nonzero. They are described by a pure imaginary wavevector. The states of second type lie in the forbidden band. They are described by a complex wavevector. These states give rise to unusual features of the electron transmission through a lateral potential barrier with spin-orbit interaction, such as an oscillatory dependence of the tunneling coefficient on the barrier width and electron energy. But of most interest is the spin polarization of an unpolarized incident electron flow. Particularly, the transmitted electron current acquires spin polarization even if the distribution function of incident electrons is symmetric with respect to the transverse momentum. The polarization efficiency is an oscillatory function of the barrier width. Spin filtering is most effective, if the Fermi energy is close to the barrier height.Comment: 9 pages, 9 figures, more general boundary conditions are used, typos correcte

    Spin current injection by intersubband transitions in quantum wells

    Full text link
    We show that a pure spin current can be injected in quantum wells by the absorption of linearly polarized infrared radiation, leading to transitions between subbands. The magnitude and the direction of the spin current depend on the Dresselhaus and Rashba spin-orbit coupling constants and light frequency and, therefore, can be manipulated by changing the light frequency and/or applying an external bias across the quantum well. The injected spin current should be observable either as a voltage generated via the anomalous spin-Hall effect, or by spatially resolved pump-probe optical spectroscopy.Comment: minor changes, short version publishe

    Ultra-fast spin avalanches in crystals of molecular magnets in terms of magnetic detonation

    Full text link
    Recent experiments (Decelle et al., Phys. Rev. Lett. 102, 027203 (2009)) discovered an ultra-fast regime of spin avalanches in crystals of magnetic magnets, which was three orders of magnitude faster than the traditionally studied magnetic deflagration. The new regime has been hypothetically identified as magnetic detonation. Here we demonstrate the possibility of magnetic detonation in the crystals, as a front consisting of a leading shock and a zone of Zeeman energy release. We study the dependence of the magnetic detonation parameters on the applied magnetic field. We find that the magnetic detonation speed only slightly exceeds the sound speed in agreement with the experimental observations.Comment: 4 pages, 4 figure

    Fast electrochemical doping due to front instability in organic semiconductors

    Full text link
    The electrochemical doping transformation in organic semiconductor devices is studied in application to light-emitting cells. It is shown that the device performance can be significantly improved by utilizing new fundamental properties of the doping process. We obtain an instability, which distorts the doping fronts and increases the doping rate considerably. We explain the physical mechanism of the instability, develop theory, provide experimental evidence, and perform numerical simulations. We further show how improved device design can amplify the instability thus leading to a much faster doping process and device kinetics.Comment: 4 pages, 4 figure

    Robust to impurity-scattering spin Hall effect in two-dimensional electron gas

    Full text link
    We propose a mechanism of spin Hall effect in two-dimensional electron gas with spatially random Rashba spin-orbit interaction. The calculations based on the Kubo formalism and kinetic equation show that in contrast to the constant spin-orbit coupling, spin Hall conductivity in the random spin-orbit field is not totally suppressed by the potential impurity scattering. Even if the regular contribution is removed by the vertex corrections, the terms we consider, remain. Therefore, the intrinsic spin-Hall effect exists being, however, non-universal.Comment: 4+ pages, 2 figure

    Physical Limits of the ballistic and non-ballistic Spin-Field-Effect Transistor: Spin Dynamics in Remote Doped Structures

    Get PDF
    We investigate the spin dynamics and relaxation in remotely-doped two dimensional electron systems where the dopants lead to random fluctuations of the Rashba spin-orbit coupling. Due to the resulting random spin precession, the spin relaxation time is limited by the strength and spatial scale of the random contribution to the spin-orbit coupling. We concentrate on the role of the randomness for two systems where the direction of the spin-orbit field does not depend on the electron momentum: the spin field-effect transistor with balanced Rashba and Dresselhaus couplings and the (011) quantum well. Both of these systems are considered as promising for the spintronics applications because of the suppression of the Dyakonov-Perel' mechanism there makes the realization of a spin field effect transistor in the diffusive regime possible. We demonstrate that the spin relaxation through the randomness of spin-orbit coupling imposes important physical limitations on the operational properties of these devices.Comment: 10 pages, 4 figure

    Cyclotron effect on coherent spin precession of two-dimensional electrons

    Full text link
    We investigate the spin dynamics of high-mobility two-dimensional electrons in GaAs/AlGaAs quantum wells grown along the [001][001] and [110][110] directions by time-resolved Faraday rotation at low temperatures. In measurements on the (001)(001)-grown structures without external magnetic fields, we observe coherent oscillations of the electron spin polarization about the effective spin-orbit field. In non-quantizing magnetic fields applied normal to the sample plane, the cyclotron motion of the electrons rotates the effective spin-orbit field. This rotation leads to fast oscillations in the spin polarization about a non-zero value and a strong increase in the spin dephasing time in our experiments. These two effects are absent in the (110)(110)-grown structure due to the different symmetry of its effective spin-orbit field. The measurements are in excellent agreement with our theoretical model.Comment: 4 pages, 3 figure

    Coherent spin dynamics in quantum wells in quantizing magnetic field

    Full text link
    We investigate theoretically the coherent longitudinal and transversal spin relaxation of photoexcited electrons in quantum wells in quantized magnetic fields. We find the relaxation time for typical quantum well parameters between 100 and 1000 ps. For a realistic random potential the relaxation process depends on the electron energy and g-factor, demonstrating oscillations in the spin polarization accompanying the spin relaxation. The dependence of spin relaxation on applied field, and thus on the corresponding "magnetic" length, can be used to characterize the spatial scale of disorder in quantum wells.Comment: 13 pages, 4 figure

    Nonlinear equation for curved stationary flames

    Get PDF
    A nonlinear equation describing curved stationary flames with arbitrary gas expansion θ=ρfuel/ρburnt\theta = \rho_{{\rm fuel}}/\rho_{{\rm burnt}}, subject to the Landau-Darrieus instability, is obtained in a closed form without an assumption of weak nonlinearity. It is proved that in the scope of the asymptotic expansion for θ1,\theta \to 1, the new equation gives the true solution to the problem of stationary flame propagation with the accuracy of the sixth order in θ1.\theta - 1. In particular, it reproduces the stationary version of the well-known Sivashinsky equation at the second order corresponding to the approximation of zero vorticity production. At higher orders, the new equation describes influence of the vorticity drift behind the flame front on the front structure. Its asymptotic expansion is carried out explicitly, and the resulting equation is solved analytically at the third order. For arbitrary values of θ,\theta, the highly nonlinear regime of fast flow burning is investigated, for which case a large flame velocity expansion of the nonlinear equation is proposed.Comment: 29 pages 4 figures LaTe
    corecore