528 research outputs found

    Theory of cavity-polariton self-trapping and optical strain in polymer chains

    Full text link
    We consider a semiconductor polymer chain coupled to a single electromagnetic mode in a cavity. The excitations of the chain have a mixed exciton-photon character and are described as polaritons. Polaritons are coupled to the lattice by the deformation potential interaction and can propagate in the chain. We find that the presence of optical excitation in the polymer induces strain on the lattice. We use a BCS variational wavefunction to calculate the chemical potential of the polaritons as a function of their density. We analyze first the case of a short chain with only two unit cells in order to check the validity of our variational approach. In the case of a long chain and for a strong coupling with the lattice, the system undergoes a phase transition corresponding to the self-trapping of polaritons. The role of the exciton spontaneous emission and cavity damping are discussed in the case of homogeneous optical lattice strain.Comment: 7 pages, 6 figure

    Exciton-phonon effects in carbon nanotube optical absorption

    Full text link
    We find that the optical properties of carbon nanotubes reflect remarkably strong effects of exciton-phonon coupling. Tight-binding calculations show that a significant fraction of the spectral weight of the absorption peak is transferred to a distinct exciton+phonon sideband, which is peaked at around 200 meV above the main absorption peak. This sideband provides a distinctive signature of the excitonic character of the optical transition. The exciton-phonon coupling is reflected in a dynamical structural distortion, which contributes a binding energy of up to 100 meV. The distortion is surprisingly long-ranged, and is strongly dependent on chirality.Comment: 5 pages, 3 figure

    In-plane ferromagnetism in charge-ordering Na0.55CoO2Na_{0.55}CoO_2

    Full text link
    The magnetic and transport properties are systematically studied on the single crystal Na0.55CoO2Na_{0.55}CoO_2 with charge ordering and divergency in resistivity below 50 K. A long-range ferromagnetic ordering is observed in susceptibility below 20 K with the magnetic field parallel to Co-O plane, while a negligible behavior is observed with the field perpendicular to the Co-O plane. It definitely gives a direct evidence for the existence of in-plane ferromagnetism below 20 K. The observed magnetoresistance (MR) of 30 % at the field of 6 T at low temperatures indicates an unexpectedly strong spin-charge coupling in triangle lattice systems.Comment: 4 pages, 5 figure

    Optical Absorption Study by Ab initio Downfolding Approach: Application to GaAs

    Full text link
    We examine whether essence and quantitative aspects of electronic excitation spectra are correctly captured by an effective low-energy model constructed from an {\em ab initio} downfolding scheme. A global electronic structure is first calculated by {\em ab initio} density-functional calculations with the generalized gradient approximation. With the help of constrained density functional theory, the low-energy effective Hamiltonian for bands near the Fermi level is constructed by the downfolding procedure in the basis of maximally localized Wannier functions. The excited states of this low-energy effective Hamiltonian ascribed to an extended Hubbard model are calculated by using a low-energy solver. As the solver, we employ the Hartree-Fock approximation supplemented by the single-excitation configuration-interaction method considering electron-hole interactions. The present three-stage method is applied to GaAs, where eight bands are retained in the effective model after the downfolding. The resulting spectra well reproduce the experimental results, indicating that our downfolding scheme offers a satisfactory framework of the electronic structure calculation, particularly for the excitations and dynamics as well as for the ground state.Comment: 14 pages, 6 figures, and 1 tabl

    Mass enhancement in narrow band systems

    Full text link
    A perturbative study of the Holstein Molecular Crystal Model which accounts for lattice structure and dimensionality effects is presented. Antiadiabatic conditions peculiar of narrow band materials and an intermediate to strong electron-phonon coupling are assumed. The polaron effective mass depends crucially in all dimensions on the intermolecular coupling strengths which also affect the size of the lattice deformation associated with the small polaron formation.Comment: Istituto Nazionale di Fisica della Materia - Dipartimento di Matematica e Fisica, Istituto Nazionale di Fisica della Materia Universita' di Camerino, 62032 Camerino, Ital

    Negative Giant Longitudinal Magnetoresistance in NiMnSb/InSb: An interface effect

    Full text link
    We report on the electrical and magneto-transport properties of the contact formed between polycrystalline NiMnSb thin films grown using pulsed laser deposition (PLD) and n-type degenerate InSb (100) substrates. A negative giant magnetoresistance (GMR) effect is observed when the external magnetic field is parallel to the surface of the film and to the current direction. We attribute the observed phenomenon to magnetic precipitates formed during the magnetic film deposition and confined to a narrow layer at the interface. The effect of these precipitates on the magnetoresistance depends on the thermal processing of the system.Comment: 14 pages, 4 figure

    Polaron self-trapping in a honeycomb net

    Full text link
    Small polaron behavior in a two dimensional honeycomb net is studied by applying the strong coupling perturbative method to the Holstein molecular crystal model. We find that small optical polarons can be mobile also if the electrons are strongly coupled to the lattice. Before the polarons localize and become very heavy, there is infact a window of {\it e-ph} couplings in which the polarons are small and have masses of order 550\simeq 5 - 50 times the bare band mass according to the value of the adiabaticity parameter. The 2D honeycomb net favors the mobility of small optical polarons in comparison with the square lattice.Comment: 6 pages, 3 figures, to appear in J.Phys.:Condensed Matter {PACS: 63.10.+a, 63.20.Dj, 71.38.+i

    Intersublevel Polaron Dephasing in Self-Assembled Quantum Dots

    Full text link
    Polaron dephasing processes are investigated in InAs/GaAs dots using far-infrared transient four wave mixing (FWM) spectroscopy. We observe an oscillatory behaviour in the FWM signal shortly (< 5 ps) after resonant excitation of the lowest energy conduction band transition due to coherent acoustic phonon generation. The subsequent single exponential decay yields long intraband dephasing times of 90 ps. We find excellent agreement between our measured and calculated FWM dynamics, and show that both real and virtual acoustic phonon processes are necessary to explain the temperature dependence of the polarization decay.Comment: 10 pages, 4 figures, submitted to Phys Rev Let

    Negative Magnetoresistance in (In,Mn)As

    Full text link
    The magnetotransport properties of an In0.95Mn0.05As thin film grown by metal-organic vapor phase epitaxy were measured. Resistivity was measured over the temperature range of 5 to 300 K. The resistivity decreased with increasing temperature from 90 ohm-cm to 0.05 ohm-cm. The field dependence of the low temperature magnetoresistance was measured. A negative magnetoresistance was observed below 17 K with a hysteresis in the magnetoresistance observed at 5 K. The magnetoresistance as a function of applied field was described by the Khosla-Fischer model for spin scattering of carriers in an impurity band.Comment: 8 pages, 4 figures, accepted to Physical Review
    corecore