98 research outputs found

    Does Pulsar B1757--24 Have a Fallback Disk?

    Full text link
    Radio pulsars are thought to spin-down primarily due to torque from magnetic dipole radiation (MDR) emitted by the time-varying stellar magnetic field as the star rotates. This assumption yields a `characteristic age' for a pulsar which has generally been assumed to be comparable to the actual age. Recent observational limits on the proper motion of pulsar B1757-24, however, revealed that the actual age (>39 kyr) of this pulsar is much greater than its MDR characteristic age (16 kyr) - calling into question the assumption of pure MDR spin-down for this and other pulsars. To explore the possible cause of this discrepancy, we consider a scenario in which the pulsar acquired an accretion disk from supernova ejecta, and the subsequent spin-down occurred under the combined action of MDR and accretion torques. A simplified model of the accretion torque involving a constant mass inflow rate at the pulsar magnetosphere can explain the age and period derivative of the pulsar for reasonable values of the pulsar magnetic field and inflow rate. We discuss testable predictions of this model.Comment: Accepted by ApJ Letters. 15 pages with 1 figur

    The effect of hypoxia on photocytotoxicity of tics tricaebocyanine dye in vitro

    Get PDF
    To evaluate the effect of cell oxygenation on photocytotoxicity of a novel tricarbocyanine indolenine dye covalently bound to glucose (TICS). Methods: HeLa cells were incubated with 5 µM TICS, 2 h later irradiated by laser at 740 nm with a light dose of 10 J/cm2, delivered at a power density of 10, 20, 25 or 30 mW/cm2, in air or in argon atmosphere, and then scored for viability. Results: The photocytotoxicity of TICS increased dramatically as the power density was reduced. Under hypoxia TICS-photosensitized cell death was determined but its value was lowered, compared to photoirradiation in the air. Conclusion: Photosensitizing effect of TICS is only partially dependent on the oxygenation of tumor cells

    Quasiclassical double photoionization from the 2^{1,3}S excited states of helium including shakeoff

    Full text link
    We account for the different symmetries of the 2^{1,3}S helium excited states in a quasiclassical description of the knockout mechanism augmented by a quantum shakeoff contribution. We are thus able to formulate the separate contribution of the knockout and shakeoff mechanisms for double photoionization for any excess energy from the 2^{1,3}S states. Photoionization ratios and singly differential cross sections calculated for the 2^{1,3}S excited states of helium are found to be in very good agreement with recent theoretical results.Comment: 9 pages, 5 figure

    Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge of structural class is used by numerous methods for identification of structural/functional characteristics of proteins and could be used for the detection of remote homologues, particularly for chains that share twilight-zone similarity. In contrast to existing sequence-based structural class predictors, which target four major classes and which are designed for high identity sequences, we predict seven classes from sequences that share twilight-zone identity with the training sequences.</p> <p>Results</p> <p>The proposed MODular Approach to Structural class prediction (MODAS) method is unique as it allows for selection of any subset of the classes. MODAS is also the first to utilize a novel, custom-built feature-based sequence representation that combines evolutionary profiles and predicted secondary structure. The features quantify information relevant to the definition of the classes including conservation of residues and arrangement and number of helix/strand segments. Our comprehensive design considers 8 feature selection methods and 4 classifiers to develop Support Vector Machine-based classifiers that are tailored for each of the seven classes. Tests on 5 twilight-zone and 1 high-similarity benchmark datasets and comparison with over two dozens of modern competing predictors show that MODAS provides the best overall accuracy that ranges between 80% and 96.7% (83.5% for the twilight-zone datasets), depending on the dataset. This translates into 19% and 8% error rate reduction when compared against the best performing competing method on two largest datasets. The proposed predictor provides accurate predictions at 58% accuracy for membrane proteins class, which is not considered by majority of existing methods, in spite that this class accounts for only 2% of the data. Our predictive model is analyzed to demonstrate how and why the input features are associated with the corresponding classes.</p> <p>Conclusions</p> <p>The improved predictions stem from the novel features that express collocation of the secondary structure segments in the protein sequence and that combine evolutionary and secondary structure information. Our work demonstrates that conservation and arrangement of the secondary structure segments predicted along the protein chain can successfully predict structural classes which are defined based on the spatial arrangement of the secondary structures. A web server is available at <url>http://biomine.ece.ualberta.ca/MODAS/</url>.</p

    Understanding biomolecular motion, recognition, and allostery by use of conformational ensembles

    Get PDF
    We review the role conformational ensembles can play in the analysis of biomolecular dynamics, molecular recognition, and allostery. We introduce currently available methods for generating ensembles of biomolecules and illustrate their application with relevant examples from the literature. We show how, for binding, conformational ensembles provide a way of distinguishing the competing models of induced fit and conformational selection. For allostery we review the classic models and show how conformational ensembles can play a role in unravelling the intricate pathways of communication that enable allostery to occur. Finally, we discuss the limitations of conformational ensembles and highlight some potential applications for the future

    Teaching: Natural or Cultural?

    Get PDF
    In this chapter I argue that teaching, as we now understand the term, is historically and cross-culturally very rare. It appears to be unnecessary to transmit culture or to socialize children. Children are, on the other hand, primed by evolution to be avid observers, imitators, players and helpers—roles that reveal the profoundly autonomous and self-directed nature of culture acquisition (Lancy in press a). And yet, teaching is ubiquitous throughout the modern world—at least among the middle to upper class segment of the population. This ubiquity has led numerous scholars to argue for the universality and uniqueness of teaching as a characteristically human behavior. The theme of this chapter is that this proposition is unsustainable. Teaching is largely a result of recent cultural changes and the emergence of modern economies, not evolution
    corecore