2,508 research outputs found

    Epitaxial ferromagnetic Fe3_{3}Si/Si(111) structures with high-quality hetero-interfaces

    Full text link
    To develop silicon-based spintronic devices, we have explored high-quality ferromagnetic Fe3_{3}Si/silicon (Si) structures. Using low-temperature molecular beam epitaxy at 130 circ^circC, we realize epitaxial growth of ferromagnetic Fe3_{3}Si layers on Si (111) with keeping an abrupt interface, and the grown Fe3_{3}Si layer has the ordered DO3DO_{3} phase. Measurements of magnetic and electrical properties for the Fe3_{3}Si/Si(111) yield a magnetic moment of ~ 3.16 muBmu_{B}/f.u. at room temperature and a rectifying Schottky-diode behavior with the ideality factor of ~ 1.08, respectively.Comment: 3 pages, 3 figure

    Meissner effect in honeycomb arrays of multi-walled carbon nanotubes

    Full text link
    We report Meissner effect for type-II superconductors with a maximum Tc of 19 K, which is the highest value among those in new-carbon related superconductors, found in the honeycomb arrays of multi-walled CNTs (MWNTs). Drastic reduction of ferromagnetic catalyst and efficient growth of MWNTs by deoxidization of catalyst make the finding possible. The weak magnetic anisotropy, superconductive coherence length (- 7 nm), and disappearance of the Meissner effect after dissolving array structure indicate that the graphite structure of an MWNT and those intertube coupling in the honeycomb array are dominant factors for the mechanism.Comment: 6 page

    Modelling of auroral electrodynamical processes: Magnetosphere to mesosphere

    Get PDF
    Research conducted on auroral electrodynamic coupling between the magnetosphere and ionosphere-atmosphere in support of the development of a global scale kinetic plasma theory is reviewed. Topics covered include electric potential structure in the evening sector; morning and dayside auroras; auroral plasma formation; electrodynamic coupling with the thermosphere; and auroral electron interaction with the atmosphere

    Investigating femtosecond laser interaction with tellurite glass family

    Get PDF
    Focusing ultrafast laser pulses induce localized permanent structural modifications on the surface or in transparent materials, that are of particular interest for photonic applications. Among the materials of interest, the tellurite glass family is attractive for near-infrared and photonics applications due to its broad-transparency window and high optical nonlinearity. Here, we systematically investigate structural changes occurring in various TeO2-based glasses exposed to femtosecond laser with various laser parameters. Remarkably, in a regime where heat accumulated after successive pulses, we observed the formation of polarization-controlled self-organized patterns expanding well beyond the focal volume, suggesting the presence of an evanescent coupling mechanism enhancing the self-organization. In addition, our results, obtained with compositional elemental analysis coupled with Raman spectra suggest different ion migration mechanisms in the laser affected zone at the surface and inside the glass. The formation of crystalline tellurium (t-Te) from glass structural units due to photo-induced elemental dissociation was observed only at the surface. The formation of ultrathin layer of crystalline tellurium offers the possibility to explore structural transitions in two-dimensional (2D) glasses by observing changes in the short- and medium- range structural orders, induced by spatial confinement
    corecore