26,842 research outputs found
Prediction of destabilizing blade tip forces for shrouded and unshrouded turbines
The effect of a nonuniform flow field on the Alford force calculation is investigated. The ideas used here are based on those developed by Horlock and Greitzer. It is shown that the nonuniformity of the flow field does contribute to the Alford force calculation. An attempt is also made to include the effect of whirl speed. The values predicted by the model are compared with those obtained experimentally by Urlicks and Wohlrab. The possibility of using existing turbine tip loss correlations to predict beta is also exploited. The nonuniform flow field induced by the tip clearnance variation tends to increase the resultant destabilizing force over and above what would be predicted on the basis of the local variation of efficiency. On the one hand, the pressure force due to the nonuniform inlet and exit pressure also plays a part even for unshrouded blades, and this counteracts the flow field effects, so that the simple Alford prediction remains a reasonable approximation. Once the efficiency variation with clearance is known, the presented model gives a slightly overpredicted, but reasonably accurate destabilizing force. In the absence of efficiency vs. clearance data, an empirical tip loss coefficient can be used to give a reasonable prediction of destabilizing force. To a first approximation, the whirl does have a damping effect, but only of small magnitude, and thus it can be ignored for some purposes
Chromospheric Evaporation in an X1.0 Flare on 2014 March 29 Observed with IRIS and EIS
Chromospheric evaporation refers to dynamic mass motions in flare loops as a
result of rapid energy deposition in the chromosphere. These have been observed
as blueshifts in X-ray and extreme-ultraviolet (EUV) spectral lines
corresponding to upward motions at a few tens to a few hundreds of km/s. Past
spectroscopic observations have also revealed a dominant stationary component,
in addition to the blueshifted component, in emission lines formed at high
temperatures (~10 MK). This is contradictory to evaporation models predicting
predominant blueshifts in hot lines. The recently launched Interface Region
Imaging Spectrograph (IRIS) provides high resolution imaging and spectroscopic
observations that focus on the chromosphere and transition region in the UV
passband. Using the new IRIS observations, combined with coordinated
observations from the EUV Imaging Spectrometer, we study the chromospheric
evaporation process from the upper chromosphere to corona during an X1.0 flare
on 2014 March 29. We find evident evaporation signatures, characterized by
Doppler shifts and line broadening, at two flare ribbons separating from each
other, suggesting that chromospheric evaporation takes place in successively
formed flaring loops throughout the flare. More importantly, we detect dominant
blueshifts in the high temperature Fe XXI line (~10 MK), in agreement with
theoretical predictions. We also find that, in this flare, gentle evaporation
occurs at some locations in the rise phase of the flare, while explosive
evaporation is detected at some other locations near the peak of the flare.
There is a conversion from gentle to explosive evaporation as the flare
evolves.Comment: ApJ in pres
Solar flare hard X-ray spikes observed by RHESSI: a case study
In this paper, we analyze hard X-ray spikes observed by RHESSI to understand
their temporal, spectral, and spatial properties. A recently developed
demodulation code was applied to hard X-ray light curves in several energy
bands observed by RHESSI. Hard X-ray spikes were selected from the demodulated
flare light curves. We measured the spike duration, the energy-dependent time
delay, and count spectral index of these spikes. We also located the hard X-ray
source emitting these spikes from RHESSI mapping that was coordinated with
imaging observations in visible and UV wavelengths. We identify quickly varying
structures of <1 s during the rise of hard X-rays in five flares. These hard
X-ray spikes can be observed at photon energies over 100 keV. They exhibit
sharp rise and decay with a duration (FWHM) of less than 1 s. Energy-dependent
time lags are present in some spikes. It is seen that the spikes exhibit harder
spectra than underlying components, typically by 0.5 in the spectral index when
they are fitted to power-law distributions. RHESSI clean maps at 25-100 keV
with an integration of 2 s centered on the peak of the spikes suggest that hard
X-ray spikes are primarily emitted by double foot-point sources in magnetic
fields of opposite polarities. With the RHESSI mapping resolution of ~ 4 arsec,
the hard X-ray spike maps do not exhibit detectable difference in the spatial
structure from sources emitting underlying components. Coordinated
high-resolution imaging UV and infrared observations confirm that hard X-ray
spikes are produced in magnetic structures embedded in the same magnetic
environment of the underlying components. The coordinated high-cadence TRACE UV
observations of one event possibly reveal new structures on spatial scales <1-2
arsec at the time of the spike superposed on the underlying component. They are
probably sources of hard X-ray spikes.Comment: 20 pages, 11 figure
Ion-beam-enhanced adhesion in the electronic stopping region
The use of ion beams in the electronic stopping region to improve the adhesion of insulators to other materials is described. In particular, the bonding of Au films to Teflon, ferrite, and SiO2 was improved by bombarding them with He and Cl, respectively. Improvements in bonding were also observed for Au on glass, Au and Cu on sapphire, and Si3N4 on Si. The mechanism is apparently associated with sputtering and track forming processes occurring in the electronic stopping region. Some applications are discussed
Magnetic Interaction in the Geometrically Frustrated Triangular Lattice Antiferromagnet
The spin wave excitations of the geometrically frustrated triangular lattice
antiferromagnet (TLA) have been measured using high resolution
inelastic neutron scattering. Antiferromagnetic interactions up to third
nearest neighbors in the ab plane (J_1, J_2, J_3, with
and ), as well as out-of-plane coupling (J_z, with
) are required to describe the spin wave dispersion
relations, indicating a three dimensional character of the magnetic
interactions. Two energy dips in the spin wave dispersion occur at the
incommensurate wavevectors associated with multiferroic phase, and can be
interpreted as dynamic precursors to the magnetoelectric behavior in this
system.Comment: 4 pages, 4 figures, published in Phys. Rev. Let
- …