92,225 research outputs found

    Construction of a surface air temperature series for Qingdao in China for the period 1899 to 2014

    No full text
    Abstract. We present a homogenized surface air temperature (SAT) time series at 2 m height for the city of Qingdao in China from 1899 to 2014. This series is derived from three data sources: newly digitized and homogenized observations of the German National Meteorological Service from 1899 to 1913, homogenized observation data of the China Meteorological Administration (CMA) from 1961 to 2014 and a gridded dataset of Willmott and Matsuura (2012) in Delaware to fill the gap from 1914 to 1960. Based on this new series, long-term trends are described. The SAT in Qingdao has a significant warming trend of 0.11 ± 0.03 °C decade−1 during 1899–2014. The coldest period occurred during 1909–1918 and the warmest period occurred during 1999–2008. For the seasonal mean SAT, the most significant warming can be found in spring, followed by winter. The homogenized time series of Qingdao is provided and archived by the Deutscher Wetterdienst (DWD) web page under overseas stations of the Deutsche Seewarte (http://www.dwd.de/EN/ourservices/overseas_stations/ueberseedoku/doi_qingdao.html) in ASCII format. Users can also freely obtain a short description of the data at https://doi.org/https://dx.doi.org/10.5676/DWD/Qing_v1 And the data can be downloaded at http://dwd.de/EN/ourservices/overseas_stations/ueberseedoku/data_qingdao.txt

    Coherent output of photons from coupled superconducting transmission line resonators controlled by charge qubits

    Full text link
    We study the coherent control of microwave photons propagating in a superconducting waveguide consisting of coupled transmission line resonators, each of which is connected to a tunable charge qubit. While these coupled line resonators form an artificial photonic crystal with an engineered photonic band structure, the charge qubits collectively behave as spin waves in the low excitation limit, which modify the band-gap structure to slow and stop the microwave propagation. The conceptual exploration here suggests an electromagnetically controlled quantum device based on the on-chip circuit QED for the coherent manipulation of photons, such as the dynamic creation of laser-like output from the waveguide by pumping the artificial atoms for population inversion.Comment: 8 pages, 3 figure
    • …
    corecore