598 research outputs found

    Effect of n+-GaAs thickness and doping density on spin injection of GaMnAs/n+-GaAs Esaki tunnel junction

    Full text link
    We investigated the influence of n+-GaAs thickness and doping density of GaMnAs/n+-GaAs Esaki tunnel junction on the efficiency of the electrical electron spin injection. We prepared seven samples of GaMnAs/n+-GaAs tunnel junctions with different n+-GaAs thickness and doping density grown on identical p-AlGaAs/p-GaAs/n-AlGaAs light emitting diode (LED) structures. Electroluminescence (EL) polarization of the surface emission was measured under the Faraday configuration with external magnetic field. All samples have the bias dependence of the EL polarization, and higher EL polarization is obtained in samples in which n+-GaAs is completely depleted at zero bias. The EL polarization is found to be sensitive to the bias condition for both the (Ga,Mn)As/n+-GaAs tunnel junction and the LED structure.Comment: 4pages, 4figures, 1table, To appear in Physica

    Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

    Full text link
    Current-driven magnetization reversal in a ferromagnetic semiconductor based (Ga,Mn)As/GaAs/(Ga,Mn)As magnetic tunnel junction is demonstrated at 30 K. Magnetoresistance measurements combined with current pulse application on a rectangular 1.5 x 0.3 um^2 device revealed that magnetization switching occurs at low critical current densities of 1.1 - 2.2 x 10^5 A/cm^2 despite the presence of spin-orbit interaction in the p-type semiconductor system. Possible mechanisms responsible for the effect are discussed.Comment: 16 pages, 4 figure

    Electronic States and Magnetism of Mn Impurities and Dimers in Narrow-Gap and Wide-Gap III-V Semiconductors

    Full text link
    Electronic states and magnetic properties of single MnMn impurity and dimer doped in narrow-gap and wide-gap IIIIII-VV semiconductors have been studied systematically. It has been found that in the ground state for single MnMn impurity, MnMn-As(N)As(N) complex is antiferromagnetic (AFM) coupling when pp-dd hybridization VpdV_{pd} is large and both the hole level EvE_{v} and the impurity level EdE_{d} are close to the midgap; or very weak ferromagnetic (FM) when VpdV_{pd} is small and both EvE_{v} and EdE_d are deep in the valence band. In MnMn dimer situation, the MnMn spins are AFM coupling for half-filled or full-filled pp orbits; on the contrast, the Mn spins are double-exchange-like FM coupling for any pp-orbits away from half-filling. We propose the strong {\it p-d} hybridized double exchange mechanism is responsible for the FM order in diluted IIIIII-VV semiconductors

    Giant tunnel magnetoresistance and high annealing stability in CoFeB/MgO/CoFeB magnetic tunnel junctions with synthetic pinned layer

    Full text link
    We investigated the relationship between tunnel magnetoresistance (TMR) ratio and the crystallization of CoFeB layers through annealing in magnetic tunnel junctions (MTJs) with MgO barriers that had CoFe/Ru/CoFeB synthetic ferrimagnet pinned layers with varying Ru spacer thickness (tRu). The TMR ratio increased with increasing annealing temperature (Ta) and tRu, reaching 361% at Ta = 425C, whereas the TMR ratio of the MTJs with pinned layers without Ru spacers decreased at Ta over 325C. Ruthenium spacers play an important role in forming an (001)-oriented bcc CoFeB pinned layer, resulting in a high TMR ratio through annealing at high temperatures.Comment: 10 pages, 5 figures, submitted to Applied Physics Letter

    Self-compensation in manganese-doped ferromagnetic semiconductors

    Full text link
    We present a theory of interstitial Mn in Mn-doped ferromagnetic semiconductors. Using density-functional theory, we show that under the non-equilibrium conditions of growth, interstitial Mn is easily formed near the surface by a simple low-energy adsorption pathway. In GaAs, isolated interstitial Mn is an electron donor, each compensating two substitutional Mn acceptors. Within an impurity-band model, partial compensation promotes ferromagnetic order below the metal-insulator transition, with the highest Curie temperature occurring for 0.5 holes per substitutional Mn.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Anomalous Hall effect in field-effect structures of (Ga,Mn)As

    Full text link
    The anomalous Hall effect in metal-insulator-semiconductor structures having thin (Ga,Mn)As layers as a channel has been studied in a wide range of Mn and hole densities changed by the gate electric field. Strong and unanticipated temperature dependence, including a change of sign, of the anomalous Hall conductance σxy\sigma_{xy} has been found in samples with the highest Curie temperatures. For more disordered channels, the scaling relation between σxy\sigma_{xy} and σxx\sigma_{xx}, similar to the one observed previously for thicker samples, is recovered.Comment: 5 pages, 5 figure

    Reorientation Transition in Single-Domain (Ga,Mn)As

    Full text link
    We demonstrate that the interplay of in-plane biaxial and uniaxial anisotropy fields in (Ga,Mn)As results in a magnetization reorientation transition and an anisotropic AC susceptibility which is fully consistent with a simple single domain model. The uniaxial and biaxial anisotropy constants vary respectively as the square and fourth power of the spontaneous magnetization across the whole temperature range up to T_C. The weakening of the anisotropy at the transition may be of technological importance for applications involving thermally-assisted magnetization switching.Comment: 4 pages, 4 figure

    A large product of cell-free translation of messenger RNA coding for corticotropin.

    Full text link

    Hydrogen patterning of Ga1-xMnxAs for planar spintronics

    Full text link
    We demonstrate two patterning techniques based on hydrogen passivation of Ga1-xMnxAs to produce isolated ferromagnetically active regions embedded uniformly in a paramagnetic, insulating host. The first method consists of selective hydrogenation of Ga1-xMnxAs by lithographic masking. Magnetotransport measurements of Hall-bars made in this manner display the characteristic properties of the hole-mediated ferromagnetic phase, which result from good pattern isolation. Arrays of Ga1-xMnxAs dots as small as 250 nm across have been realized by this process. The second process consists of blanket hydrogenation of Ga1-xMnxAs followed by local reactivation using confined low-power pulsed-laser annealing. Conductance imaging reveals local electrical reactivation of micrometer-sized regions that accompanies the restoration of ferromagnetism. The spatial resolution achievable with this method can potentially reach <100 nm by employing near-field laser processing. The high spatial resolution attainable by hydrogenation patterning enables the development of systems with novel functionalities such as lateral spin-injection as well as the exploration of magnetization dynamics in individual and coupled structures made from this novel class of semiconductors.Comment: ICDS-24, July 2007. 8 pages with 4 figure
    corecore