380 research outputs found

    Spin Susceptibility in the Superconducting state of Ferromagnetic Superconductor UCoGe

    Get PDF
    In order to determine the superconducting paring state in the ferromagnetic superconductor UCoGe, ^{59}Co NMR Knight shift, which is directly related to the microscopic spin susceptibility, was measured in the superconducting state under magnetic fields perpendicular to spontaneous magnetization axis: ^{59}K^{a, b}. ^{59}K^{a, b} shows to be constant, but does not decrease below a superconducting transition. These behaviors as well as the invariance of the internal field at the Co site in the superconducting state exclude the spin-singlet pairing, and can be interpreted with the equal-spin pairing state with a large exchange field along the c axis, which was studied by Mineev [Phys. Rev. B 81, 180504 (2010)].Comment: 5 pages, 4 figures, to be appear in PR

    Nonreciprocal Phonon Propagation in a Metallic Chiral Magnet

    Full text link
    The phonon magnetochiral effect (MChE) is the nonreciprocal acoustic and thermal transports of phonons caused by the simultaneous breaking of the mirror and time-reversal symmetries. So far, the phonon MChE has been observed only in a ferrimagnetic insulator Cu2OSeO3, where the nonreciprocal response disappears above the Curie temperature of 58 K. Here, we study the nonreciprocal acoustic properties of a room-temperature ferromagnet Co9Zn9Mn2 for unveiling the phonon MChE close to the room temperature. Surprisingly, the nonreciprocity in this metallic compound is enhanced at higher temperatures and observed up to 250 K. This clear contrast between insulating Cu2OSeO3 and metallic Co9Zn9Mn2 suggests that metallic magnets have a mechanism to enhance the nonreciprocity at higher temperatures. From the ultrasound and microwave-spectroscopy experiments, we conclude that the magnitude of the phonon MChE of Co9Zn9Mn2 mostly depends on the magnon bandwidth, which increases at low temperatures and hinders the magnon-phonon hybridization. Our results suggest that the phonon nonreciprocity could be further enhanced by engineering the magnon band of materials.Comment: 6 pages, 4 figures, 1 tabl

    Metastable skyrmion lattices governed by magnetic disorder and anisotropy in β\beta-Mn-type chiral magnets

    Full text link
    Magnetic skyrmions are vortex-like topological spin textures often observed in structurally chiral magnets with Dzyaloshinskii-Moriya interaction. Among them, Co-Zn-Mn alloys with a β\beta-Mn-type chiral structure host skyrmions above room temperature. In this system, it has recently been found that skyrmions persist over a wide temperature and magnetic field region as a long-lived metastable state, and that the skyrmion lattice transforms from a triangular lattice to a square one. To obtain perspective on chiral magnetism in Co-Zn-Mn alloys and clarify how various properties related to the skyrmion vary with the composition, we performed systematic studies on Co10_{10}Zn10_{10}, Co9_9Zn9_9Mn2_2, Co8_8Zn8_8Mn4_4 and Co7_7Zn7_7Mn6_6 in terms of magnetic susceptibility and small-angle neutron scattering measurements. The robust metastable skyrmions with extremely long lifetime are commonly observed in all the compounds. On the other hand, preferred orientation of a helimagnetic propagation vector and its temperature dependence dramatically change upon varying the Mn concentration. The robustness of the metastable skyrmions in these materials is attributed to topological nature of the skyrmions as affected by structural and magnetic disorder. Magnetocrystalline anisotropy as well as magnetic disorder due to the frustrated Mn spins play crucial roles in giving rise to the observed change in helical states and corresponding skyrmion lattice form.Comment: 70 pages, 19 figure

    Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet

    Full text link
    Magnetic skyrmions are vortex-like topological spin textures often observed to form a triangular-lattice skyrmion crystal in structurally chiral magnets with Dzyaloshinskii-Moriya interaction. Recently β\beta-Mn structure-type Co-Zn-Mn alloys were identified as a new class of chiral magnet to host such skyrmion crystal phases, while β\beta-Mn itself is known as hosting an elemental geometrically frustrated spin liquid. Here we report the intermediate composition system Co7_7Zn7_7Mn6_6 to be a unique host of two disconnected, thermal-equilibrium topological skyrmion phases; one is a conventional skyrmion crystal phase stabilized by thermal fluctuations and restricted to exist just below the magnetic transition temperature TcT_\mathrm{c}, and the other is a novel three-dimensionally disordered skyrmion phase that is stable well below TcT_\mathrm{c}. The stability of this new disordered skyrmion phase is due to a cooperative interplay between the chiral magnetism with Dzyaloshinskii-Moriya interaction and the frustrated magnetism inherent to β\beta-Mn.Comment: 57 pages, 16 figure
    corecore