slides

Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet

Abstract

Magnetic skyrmions are vortex-like topological spin textures often observed to form a triangular-lattice skyrmion crystal in structurally chiral magnets with Dzyaloshinskii-Moriya interaction. Recently β\beta-Mn structure-type Co-Zn-Mn alloys were identified as a new class of chiral magnet to host such skyrmion crystal phases, while β\beta-Mn itself is known as hosting an elemental geometrically frustrated spin liquid. Here we report the intermediate composition system Co7_7Zn7_7Mn6_6 to be a unique host of two disconnected, thermal-equilibrium topological skyrmion phases; one is a conventional skyrmion crystal phase stabilized by thermal fluctuations and restricted to exist just below the magnetic transition temperature TcT_\mathrm{c}, and the other is a novel three-dimensionally disordered skyrmion phase that is stable well below TcT_\mathrm{c}. The stability of this new disordered skyrmion phase is due to a cooperative interplay between the chiral magnetism with Dzyaloshinskii-Moriya interaction and the frustrated magnetism inherent to β\beta-Mn.Comment: 57 pages, 16 figure

    Similar works