229 research outputs found

    Normal zone in YBa2Cu3O6+xYBa_2Cu_3O_{6+x}-coated conductors

    Full text link
    We consider the distribution of an electric field in YBCO-coated conductors for a situation in which the DC transport current is forced into the copper stabilizer due to a weak link -- a section of the superconducting film with a critical current less than the transport current. The electric field in the metal substrate is also discussed. The results are compared with recent experiments on normal zone propagation in coated conductors for which the substrate and stabilizer are insulated from each other. The potential difference between the substrate and stabilizer, and the electric field in the substrate outside the normal zone can be accounted for by a large screening length in the substrate, comparable to the length of the sample. During a quench, the electric field inside the interface between YBCO and stabilizer, as well as in the buffer layer, can be several orders of magnitude greater than the longitudinal macroscopic electric field inside the normal zone. We speculate on the possibility of using possible microscopic electric discharges caused by this large (∼\sim kV/cm) electric field as a means to detect a quench.Comment: 8 pages, 4 figure

    Electronic structure of d-wave superconducting quantum wires

    Full text link
    We present analytical and numerical results for the electronic spectra of wires of a d-wave superconductor on a square lattice. The spectra of Andreev and other quasiparticle states, as well as the spatial and particle-hole structures of their wave functions, depend on interference effects caused by the presence of the surfaces and are qualitatively different for half-filled wires with even or odd number of chains. For half-filled wires with an odd number of chains N at (110) orientation, spectra consist of N doubly degenerate branches. By contrast, for even N wires, these levels are split, and all quasiparticle states, even the ones lying above the maximal gap, have the characteristic properties of Andreev bound states. These Andreev states above the gap can be interpreted as a consequence of an infinite sequence of Andreev reflections experienced by quasiparticles along their trajectories bounded by the surfaces of the wire. Our microscopic results for the local density of states display atomic-scale Friedel oscillations due to the presence of the surfaces, which should be observable by scanning tunneling microscopy. For narrow wires the self-consistent treatment of the order parameter is found to play a crucial role. In particular, we find that for small wire widths the finite geometry may drive strong fluctuations or even stablilize exotic quasi-1D pair states with spin triplet character.Comment: 21 pages, 20 figures. Slightly modified version as published in PR

    Influence of impurity-scattering on tunneling conductance in d-wave superconductors with broken time reversal symmetry

    Full text link
    Effects of impurity scattering on tunneling conductance in dirty normal-metal/insulator/superconductor junctions are studied based on the Kubo formula and the recursive Green function method. The zero-bias conductance peak (ZBCP) is a consequence of the unconventional pairing symmetry in superconductors. The impurity scattering in normal metals suppresses the amplitude of the ZBCP. The degree of the suppression agrees well with results of the quasiclassical Green function theory. When superconductors have dd+is-wave pairing symmetry, the time-reversal symmetry is broken in superconductors and the ZBCP splits into two peaks. The random impurity scattering reduces the height of the two splitting peaks. The position of the splitting peaks, however, almost remains unchanged even in the presence of the strong impurity scattering. Thus the two splitting peaks never merge into a single ZBCP.Comment: 12 pages, 5 figures, using jpsj2.cls and overcite.st

    A phenomenological theory of zero-energy Andreev resonant states

    Full text link
    A conceptual consideration is given to a zero-energy state (ZES) at the surface of unconventional superconductors. The reflection coefficients in normal-metal / superconductor (NS) junctions are calculated based on a phenomenological description of the reflection processes of a quasiparticle. The phenomenological theory reveals the importance of the sign change in the pair potential for the formation of the ZES. The ZES is observed as the zero-bias conductance peak (ZBCP) in the differential conductance of NS junctions. The split of the ZBCP due to broken time-reversal symmetry states is naturally understood in the present theory. We also discuss effects of external magnetic fields on the ZBCP.Comment: 12 page

    Spin polarized tunneling in ferromagnet/unconventional superconductor junctions

    Full text link
    We study tunneling in ferromagnet/unconventional superconductor (F/S) junctions. We include the effects of spin polarization, interfacial resistance, and Fermi wavevector mismatch (FWM) between the F and S regions. Andreev reflection (AR) at the F/S interface, governing tunneling at low bias voltage, is strongly modified by these parameters. The conductance exhibits a very wide variety of features as a function of applied voltage.Comment: Revision includes new figures with angular averages and correction of minor error

    Zero-bias conductance peak splitting due to multiband effect in tunneling spectroscopy

    Full text link
    We study how the multiplicity of the Fermi surface affects the zero-bias peak in conductance spectra of tunneling spectroscopy. As case studies, we consider models for organic superconductors κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2 and (TMTSF)2_2ClO4_4. We find that multiplicity of the Fermi surfaces can lead to a splitting of the zero-bias conductance peak (ZBCP). We propose that the presence/absence of the ZBCP splitting is used as a probe to distinguish the pairing symmetry in κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2.Comment: 7 pages, 7 figure

    Discrete-Lattice Model for Surface Bound States and Tunneling in d-Wave Superconductors

    Full text link
    Surface bound states in a discrete-lattice model of a dx2−y2d_{x^2 - y^2} cuprate superconductor are shown to be, in general, coherent superpositions of an incoming excitation and more than one outgoing excitation, and a simple graphical construction based on a surface Brillouin zone is developed to describe their nature. In addition, a momentum-dependent lifetime contribution to the width of these bound states as observed in tunneling experiments is derived and elucidated in physical terms.Comment: 4 pages, 1 figure, revte

    Long-range nonlocal flow of vortices in narrow superconducting channels

    Get PDF
    We report a new nonlocal effect in vortex matter, where an electric current confined to a small region of a long and sufficiently narrow superconducting wire causes vortex flow at distances hundreds of inter-vortex separations away. The observed remote traffic of vortices is attributed to a very efficient transfer of a local strain through the one-dimensional vortex lattice, even in the presence of disorder. We also observe mesoscopic fluctuations in the nonlocal vortex flow, which arise due to "traffic jams" when vortex arrangements do not match a local geometry of a superconducting channel.Comment: a slightly longer version of a tentatively accepted PR

    Josephson effect in d-wave superconductor junctions in a lattice model

    Full text link
    Josephson current between two d-wave superconductors is calculated by using a lattice model. Here we consider two types of junctions, i.e.i.e., the parallel junction and the mirror-type junction. The maximum Josephson current (Jc)(J_{c}) shows a wide variety of temperature (TT) dependence depending on the misorientation angles and the types of junctions. When the misorientation angles are not zero, the Josephson current shows the low-temperature anomaly because of a zero energy state (ZES) at the interfaces. In the case of mirror-type junctions, JcJ_c has a non monotonic temperature dependence. These results are consistent with the previous results based on the quasiclassical theory. [Y. Tanaka and S. Kashiwaya: Phys. Rev. B \textbf{56} (1997) 892.] On the other hand, we find that the ZES disappears in several junctions because of the Freidel oscillations of the wave function, which is peculiar to the lattice model. In such junctions, the temperature dependence of JcJ_{c} is close to the Ambegaokar-Baratoff relation.Comment: 17 pages, 10 figures, using jpsj2.cls and oversite.st

    Localized surface states in HTSC: Alternative mechanism of zero-bias conductance peaks

    Full text link
    It is shown that the quasiparticle states localized in the vicinity of surface imperfections of atomic size can be responsible for the zero-bias tunneling conductance peaks in high-Tc superconductors. The contribution from these states can be easily separated from other mechanisms using their qualitatively different response on an external magnetic field.Comment: REVTeX, 4 pages, 2 figs; to be published in PR
    • …
    corecore