35 research outputs found

    Naloxone's Pentapeptide Binding Site on Filamin A Blocks Mu Opioid Receptor–Gs Coupling and CREB Activation of Acute Morphine

    Get PDF
    Chronic morphine causes the mu opioid receptor (MOR) to switch its coupling from Gi/o to Gs, resulting in excitatory signaling via both Gαs and its Gβγ dimer. Ultra-low-dose naloxone (NLX) prevents this switch and attenuates opioid tolerance and dependence. This protective effect is mediated via a high-affinity interaction of NLX to a pentapeptide region in c-terminal filamin A (FLNA), a scaffolding protein interacting with MOR. In organotypic striatal slice cultures, we now show that acute morphine induces a dose-dependent Go-to-Gs coupling switch at 5 and 15 min that resolves by 1 hr. The acute Gs coupling induced by 100 µM morphine was completely prevented by co-treatment with 100 pM NLX, (+)NLX, or naltrexone (NTX), or their pentapeptide binding site (FLNA2561–2565), which we show can act as a decoy for MOR or bind to FLNA itself. All of these co-treatments presumably prevent the MOR–FLNA interaction. Since ultra-low-dose NTX also attenuates the addictive properties of opioids, we assessed striatal cAMP production and CREB phosphorylation at S133. Correlating with the Gs coupling, acute morphine induced elevated cAMP levels and a several-fold increase in pS133CREB that were also completely blocked by NLX, NTX or the FLNA pentapeptide. We propose that acute, robust stimulation of MOR causes an interaction with FLNA that allows an initially transient MOR–Gs coupling, which recovers with receptor recycling but persists when MOR stimulation is repeated or prolonged. The complete prevention of this acute, morphine-induced MOR–Gs coupling by 100 pM NLX/NTX or 10 µM pentapeptide segment of FLNA further elucidates both MOR signaling and the mechanism of action of ultra-low-dose NLX or NTX in attenuating opioid tolerance, dependence and addictive potential

    High-Affinity Naloxone Binding to Filamin A Prevents Mu Opioid Receptor–Gs Coupling Underlying Opioid Tolerance and Dependence

    Get PDF
    Ultra-low-dose opioid antagonists enhance opioid analgesia and reduce analgesic tolerance and dependence by preventing a G protein coupling switch (Gi/o to Gs) by the mu opioid receptor (MOR), although the binding site of such ultra-low-dose opioid antagonists was previously unknown. Here we show that with approximately 200-fold higher affinity than for the mu opioid receptor, naloxone binds a pentapeptide segment of the scaffolding protein filamin A, known to interact with the mu opioid receptor, to disrupt its chronic opioid-induced Gs coupling. Naloxone binding to filamin A is demonstrated by the absence of [3H]-and FITC-naloxone binding in the melanoma M2 cell line that does not contain filamin or MOR, contrasting with strong [3H]naloxone binding to its filamin A-transfected subclone A7 or to immunopurified filamin A. Naloxone binding to A7 cells was displaced by naltrexone but not by morphine, indicating a target distinct from opioid receptors and perhaps unique to naloxone and its analogs. The intracellular location of this binding site was confirmed by FITC-NLX binding in intact A7 cells. Overlapping peptide fragments from c-terminal filamin A revealed filamin A2561-2565 as the binding site, and an alanine scan of this pentapeptide revealed an essential mid-point lysine. Finally, in organotypic striatal slice cultures, peptide fragments containing filamin A2561-2565 abolished the prevention by 10 pM naloxone of both the chronic morphine-induced mu opioid receptor–Gs coupling and the downstream cAMP excitatory signal. These results establish filamin A as the target for ultra-low-dose opioid antagonists previously shown to enhance opioid analgesia and to prevent opioid tolerance and dependence

    Dexmedetomidine is neuroprotective in an in vitro model for traumatic brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The α<sub>2</sub>-adrenoreceptor agonist dexmedetomidine is known to provide neuroprotection under ischemic conditions. In this study we investigated whether dexmedetomidine has a protective effect in an <it>in vitro </it>model for traumatic brain injury.</p> <p>Methods</p> <p>Organotypic hippocampal slice cultures were subjected to a focal mechanical trauma and then exposed to varying concentrations of dexmedetomidine. After 72 h cell injury was assessed using propidium iodide. In addition, the effects of delayed dexmedetomidine application, of hypothermia and canonical signalling pathway inhibitors were examined.</p> <p>Results</p> <p>Dexmedetomidine showed a protective effect on traumatically injured hippocampal cells with a maximum effect at a dosage of 1 μM. This effect was partially reversed by the simultaneous administration of the ERK inhibitor PD98059.</p> <p>Conclusion</p> <p>In this TBI model dexmedetomidine had a significant neuroprotective effect. Our results indicate that activation of ERK might be involved in mediating this effect.</p

    Birth, growth and computation of pi to ten trillion digits

    Get PDF

    ANTIARRHYTHMIC EFFECT OF PENTAMIN

    No full text
    Antiarrhythmic effect of pentamin

    TO THE 95TH ANNIVERSARY OF THE DEPARTMENT OF PROPEDEUTICS OF INTERNAL DISEASES

    Get PDF
    Aim. To show the significance of the department of propedeutics of internal diseases in the structure of higher medical education and its role in the education of medical personnel in Kuban Medical University since its establishment. The article is devoted to the work of one of the oldest departments of Kuban State Medical University − department of propedeutics of internal diseases, − which was founded in 1922. The discipline taught in the department is one of the key stages of internal diseases studying. During the existence of the department, such prominent figures of medical science of the Kuban worked there: N.N. Niyibizi, K.M. Rutkevich, P.I. Budarin, K.A. Patsevich. The historical path of the department in many ways reflects the history of the University, the region and the country.Conclusion. The staff of the department has made a significant contribution to the development of healthcare of Krasnodar region and continues work on the training of doctors
    corecore