204 research outputs found
A Brief Talk of the Disinfection Process for Reclaimed Water
In recent years, with the reclaimed water being more and more widely used, people begin to pay more and more attention to the security of it. Because the reclaimed water comes from the sewage, which has been deeply treated, its quality is quite complex and it may contain many bacteria, viruses and poisonous that are harm to people. When it’s reused, it is inevitable that the reclaimed water may come into contact with people’s body, which has exposure risk. In order to reduce the risk of exposure, ensure the security of the quality of the reclaimed water, the disinfection becomes the most critical factors in dealing with the reclaimed water in the process. In the paper, the current disinfection techniques were discussed and compared in the aspects of technical features, the effects of disinfection and economy. And a brief summary of the new disinfection technology that was widely studied was made
Coherent Compensation based ISAC Signal Processing for Long-range Sensing
Integrated sensing and communication (ISAC) will greatly enhance the
efficiency of physical resource utilization. The design of ISAC signal based on
the orthogonal frequency division multiplex (OFDM) signal is the mainstream.
However, when detecting the long-range target, the delay of echo signal exceeds
CP duration, which will result in inter-symbol interference (ISI) and
inter-carrier interference (ICI), limiting the sensing range. Facing the above
problem, we propose to increase useful signal power through coherent
compensation and improve the signal to interference plus noise power ratio
(SINR) of each OFDM block. Compared with the traditional 2D-FFT algorithm, the
improvement of SINR of range-doppler map (RDM) is verified by simulation, which
will expand the sensing range
Polarization-based probabilistic discriminative model for quantitative characterization of cancer cells
We propose a polarization-based probabilistic discriminative model for deriving a set of new sigmoid-transformed polarimetry feature parameters, which not only enables accurate and quantitative characterization of cancer cells at pixel level, but also accomplish the task with a simple and stable model. By taking advantages of polarization imaging techniques, these parameters enable a low-magnification and wide-field imaging system to separate the types of cells into more specific categories that previously were distinctive under high magnification. Instead of blindly choosing the model, the L0 regularization method is used to obtain the simplified and stable polarimetry feature parameter. We demonstrate the model viability by using the pathological tissues of breast cancer and liver cancer, in each of which there are two derived parameters that can characterize the cells and cancer cells respectively with satisfactory accuracy and sensitivity. The stability of the final model opens the possibility for physical interpretation and analysis. This technique may bypass the typically labor-intensive and subjective tumor evaluating system, and could be used as a blueprint for an objective and automated procedure for cancer cell screening
Dynamics and implications of anti-drug antibodies against adalimumab using ultra-sensitive and highly drug-tolerant assays
BackgroundAdalimumab induces the production of anti-drug antibodies (ADA) that may lead to reduced drug concentration and loss-of-response, posing significant clinical challenges. However, traditional immunoassays have limitations in terms of sensitivity and drug-tolerance, hindering the insights of ADA response.MethodsHerein, we developed an integrated immunoassay platform combining the electrochemiluminescence immunoassay with immunomagnetic separation strategy. A longitudinal cohort study involving 49 patients with ankylosing spondylitis was carried out to analyze the dynamic profiles of ADA and to investigate the impact of ADA on adalimumab pharmacokinetics using a population pharmacokinetic model. Additionally, cross-sectional data from 12 patients were collected to validate the correlation between ADA levels and disease relapse.ResultsThe ADA assay demonstrated high sensitivity (0.4 ng/mL) and drug-tolerance (100 μg/mL), while the neutralizing antibodies (NAB) assay showed a sensitivity of 100 ng/mL and drug-tolerance of 20 μg/mL. Analysis of the longitudinal cohort revealed that a majority of patients (44/49, 90%) developed persistent ADA within the first 24 weeks of treatment. ADA levels tended to plateau over time after an initial increase during the early immune response phase. Further, nearly all of the tested patients (26/27, 96%) were classified as NAB positive, with a strong correlation between ADA levels and neutralization capacity (R2 = 0.83, P < 0.001). Population pharmacokinetic modeling revealed a significant positive association between model-estimated individual clearance and observed ADA levels. Higher ADA levels were associated with adalimumab clearance and disease relapse in a cross-sectional cohort, suggesting a promising ADA threshold of 10 for potential clinical application. Moreover, the IgG class was the primary contributor to ADA against adalimumab and the apparent affinity exhibited an increasing trend over time, indicating a T-cell dependent mechanism for ADA elicitation by adalimumab.ConclusionIn summary, this integrated immunoassay platform shows promise for in-depth analysis of ADA against biologics, offering fresh insights into immunogenicity and its clinical implications
Assessment of the impact of intravenous antibiotics treatment on gut microbiota in patients: Clinical data from pre-and post-cardiac surgery
Background and aimsSurgical site infection is a common complication after surgery. Periprocedural antibiotics are necessary to prescribe for preventing or treating infections. The present study aimed to explore the effect of intravenous antibiotics on gut microbiota and menaquinone biosynthesis in patients, especially in elderly patients undergoing cardiac surgery.MethodsA total of 388 fecal samples were collected from 154 cardiac surgery patients. The V3–V4 hypervariable region of the bacterial 16S rRNA gene was amplified and sequenced on a MiSeq PE300. The gut microbiota diversity of samples was analyzed in terms of α- and β-diversity at the OTU level. The different groups were classified according to antibiotics in combinations and single antibiotics. PICRUSt2 was used for preliminary prediction of the gut microbiota function for menaquinone biosynthesis.ResultsThe intravenously administered antibiotics which are excreted via bile represents the main antibiotics that could disturb the gut microbiota’s composition in cardiac surgery patients, especially for elderly patients. The effect of antibiotics on gut microbiota is produced after antibiotics treatments over one week. The recovery of gut microbiota to the state of pre-antibiotics may require over two weeks of antibiotics withdrawal. Sex factor doesn’t represent as an influencer in gut microbiota composition. Long-term use of cefoperazone-sulbactam may affect coagulation function.ConclusionsThe composition of the gut microbiota had a significant change post-intravenous antibiotics treatment in cardiac surgery patients. The richness and diversity of gut microbiota are increased in elderly patients
Recommended from our members
Hybrid Decay: A Transgenerational Epigenetic Decline in Vigor and Viability Triggered in Backcross Populations of Teosinte with Maize.
In the course of generating populations of maize with teosinte chromosomal introgressions, an unusual sickly plant phenotype was noted in individuals from crosses with two teosinte accessions collected near Valle de Bravo, Mexico. The plants of these Bravo teosinte accessions appear phenotypically normal themselves and the F1 plants appear similar to typical maize × teosinte F1s. However, upon backcrossing to maize, the BC1 and subsequent generations display a number of detrimental characteristics including shorter stature, reduced seed set, and abnormal floral structures. This phenomenon is observed in all BC individuals and there is no chromosomal segment linked to the sickly plant phenotype in advanced backcross generations. Once the sickly phenotype appears in a lineage, normal plants are never again recovered by continued backcrossing to the normal maize parent. Whole-genome shotgun sequencing reveals a small number of genomic sequences, some with homology to transposable elements, that have increased in copy number in the backcross populations. Transcriptome analysis of seedlings, which do not have striking phenotypic abnormalities, identified segments of 18 maize genes that exhibit increased expression in sickly plants. A de novo assembly of transcripts present in plants exhibiting the sickly phenotype identified a set of 59 upregulated novel transcripts. These transcripts include some examples with sequence similarity to transposable elements and other sequences present in the recurrent maize parent (W22) genome as well as novel sequences not present in the W22 genome. Genome-wide profiles of gene expression, DNA methylation, and small RNAs are similar between sickly plants and normal controls, although a few upregulated transcripts and transposable elements are associated with altered small RNA or methylation profiles. This study documents hybrid incompatibility and genome instability triggered by the backcrossing of Bravo teosinte with maize. We name this phenomenon "hybrid decay" and present ideas on the mechanism that may underlie it
Expression of a LINE-1 endonuclease variant in gastric cancer: its association with clinicopathological parameters
BACKGROUND: Long interspersed nuclear element-1 (LINE-1 or L1), the most abundant and only autonomously active family of non-LTR retrotransposons in the human genome, expressed not only in the germ lines but also in somatic tissues. It contributes to genetic instability, aging, and age-related diseases, such as cancer. Our previous study identified in human gastric adenocarcinoma an upregulated transcript GCRG213, which shared 88% homology with human L1 sequence and contained a putative conserved apurinic/apyrimidinic endonucleas1 domain. METHODS: Immunohistochemistry was carried out by using a monoclonal mouse anti-human GCRG213 protein (GCRG213p) antibody produced in our laboratory, on tissue microarray constructed with specimens from 175 gastric adenocarcinoma patients. The correlation between GCRG213p expression and patient clinicopathological parameters was evaluated. GCRG213p expression in gastric cancer cell lines were studied using Western blotting analysis. L1 promoter methylation status of gastric cancer cells was tested using methylation-specific PCR. BLASTP was used at the NCBI Blast server to identify GCRG213p sequence to any alignments in the Protein Data Bank databases. RESULTS: Most primary gastric cancer, lymph node metastases and gastric intestinal metaplasia glands showed positive GCRG213p immunoreactivity. High GCRG213p immunostaining score in the primary gastric cancer was positively correlated with tumor differentiation (well differentiated, p = 0.001), Lauren’s classification (intestinal type, p < 0.05) and a late age onset of gastric adenocarcinoma (≥65 yrs; p < 0.05). GCRG213p expression has no association with other clinicopathological parameters, including survival. Western blotting analysis of GCRG213p expression in gastric cancer cells indicated that GCRG213p level was higher in gastric cancer cell lines than in human normal gastric epithelium immortalized cell line GES-1. Partial methylation of L1 in gastric cancer cells was confirmed by methylation-specific PCR. BLASTP program analysis revealed that GCRG213p peptide shared 83.0% alignment with the C-terminal region of L1 endonuclease (L1-EN). GCRG213p sequence possesses the important residues that compose the conserved features of L1-EN. CONCLUSIONS: GCRG213p could be a variant of L1-EN, a functional member of L1-EN family. Overexpression of GCRG213p is common in both primary gastric cancer and lymph node metastasis. These findings provide evidence of somatic L1 expression in gastric cancer, and its potential consequences in the form of tumor
Expression of GCRG213p, LINE-1 endonuclease variant, significantly different in gastric complete and incomplete intestinal metaplasia.
BACKGROUND: Intestinal metaplasia (IM) of the gastric mucosa is classified as complete (Type I) and incomplete IM (Type II and III) subtypes, which showed significantly different risk for developing to gastric adenocarcinoma (GAC). GCRG213, a variant of L1-endonuclease (L1-EN), first identified in our lab, was upregulated in GAC tissue. However, the relationship between GCRG213 and IM subtypes is not clear. Our study explored the association of GCRG213 protein (GCRG213p) with IM subtypes.
METHODS: Gastric cancer and/or para-tumor tissue samples were collected from 123 patients who underwent gastrectomy for intestinal type gastric adenocarcinoma. The subtypes of IM were characterized with Alcian blue-periodic acid-Schiff and High Iron Diamine-Alcian blue staining methods. Immunohistochemistry of GCRG213p was performed, and its expression in gastric adenocarcinoma and para-tumor tissue including dysplasia, IM, and normal mucosa were analyzed.
RESULTS: GCRG213p was expressed in 48.94% IM, 57.14% dysplasia and 55.32% GAC, respectively. GCRG213p expression was higher in well and moderately differentiated adenocarcinoma (P = 0.037). In IM glands, GCRG213p expressed mainly in the cytoplasm of absorptive enterocytes with defined brush borders, but not in goblet cells. The expression of GCRG213p in type I IM (90.00%) was significantly higher than that in type II (36.36%) and type III (25.00%) (P \u3c 0.001). In normal gastric mucosa, GCRG213p was exclusively positive in the cytoplasm of gastric chief cells.
CONCLUSIONS: The expression of GCRG213p in complete IM was significantly higher than in incomplete IM, which implies that GCRG213p may play a role on the developing of IM to adenocarcinoma. GCRG213p was exclusively expressed in chief cells, suggesting that it might be involved in cell differentiation from the chief cells to IM
Serum Procalcitonin Correlates with Renal Function in Hepatitis B Virus-Related Acute-on-Chronic Liver Failure
Background/Aims: To investigate the relationship between elevated serum procalcitonin (PCT) and renal function in hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF). Methods: HBV-ACLF patients (n = 201) presenting to the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, from January 2013 to November 2016 were categorized into three groups according to serum PCT levels: (i) normal group (n = 74) had PCT of ≤ 0.5 ng/mL; (ii) elevated group (n = 85) had PCT in the range 0.5–1.0 ng/mL; and (iii) highly elevated group (n = 42) had PCT of > 1.0 ng/mL. Thirty-five cases received standard care after admission. Serum PCT levels and renal function were determined during a two-week follow-up. Results: Significant increases in serum creatinine (Cr) were recorded in male and female patients in the elevated group and highly elevated group compared with the normal group (P < 0.05). In addition, serum Cr levels in male and female patients were significantly higher in the highly elevated group than in the elevated group (P < 0.05). The glomerular filtration rate (GFR) was significantly lower in the highly elevated group (P < 0.05) and this group had the highest risk of altered Cr (45.9% in males; 80% in females) and abnormal GFR (37.5%). Serum PCT levels correlated significantly with all renal function parameters including homocysteine (Hcy), GFR, Cr, blood urea nitrogen, uric acid, and cystatin C at baseline and during treatment. Univariate and multivariate analyses indicated that serum PCT was a strong predictor of renal dysfunction. Conclusion: Serum PCT is closely related to renal dysfunction in HBV-ACLF
Effect of sublethal dose of chloramphenicol on biofilm formation and virulence in Vibrio parahaemolyticus
Vibrio parahaemolyticus isolates are generally very sensitive to chloramphenicol. However, it is usually necessary to transfer a plasmid carrying a chloramphenicol resistance gene into V. parahaemolyticus to investigate the function of a specific gene, and the effects of chloramphenicol on bacterial physiology have not been investigated. In this work, the effects of sublethal dose of chloramphenicol on V. parahaemolyticus were investigated by combined utilization of various phenotypic assays and RNA sequencing (RNA-seq). The results showed that the growth rate, biofilm formation capcity, c-di-GMP synthesis, motility, cytoxicity and adherence activity of V. parahaemolyticus were remarkably downregulated by the sublethal dose of chloramphenicol. The RNA-seq data revealed that the expression levels of 650 genes were significantly differentially expressed in the response to chloramphenicol stress, including antibiotic resistance genes, major virulence genes, biofilm-associated genes and putative regulatory genes. Majority of genes involved in the synthesis of polar flagellum, exopolysaccharide (EPS), mannose-sensitive haemagglutinin type IV pilus (MSHA), type III secretion systems (T3SS1 and T3SS2) and type VI secretion system 2 (T6SS2) were downregulated by the sublethal dose of chloramphenicol. Five putative c-di-GMP metabolism genes were significantly differentially expressed, which may be the reason for the decrease in intracellular c-di-GMP levels in the response of chloramphenicol stress. In addition, 23 genes encoding putative regulators were also significantly differentially expressed, suggesting that these regulators may be involved in the resistance of V. parahaemolyticus to chloramphenicol stress. This work helps us to understand how chloramphenicol effect on the physiology of V. parahaemolyticus
- …