80 research outputs found

    Learning Real-world Autonomous Navigation by Self-Supervised Environment Synthesis

    Full text link
    Machine learning approaches have recently enabled autonomous navigation for mobile robots in a data-driven manner. Since most existing learning-based navigation systems are trained with data generated in artificially created training environments, during real-world deployment at scale, it is inevitable that robots will encounter unseen scenarios, which are out of the training distribution and therefore lead to poor real-world performance. On the other hand, directly training in the real world is generally unsafe and inefficient. To address this issue, we introduce Self-supervised Environment Synthesis (SES), in which, after real-world deployment with safety and efficiency requirements, autonomous mobile robots can utilize experience from the real-world deployment, reconstruct navigation scenarios, and synthesize representative training environments in simulation. Training in these synthesized environments leads to improved future performance in the real world. The effectiveness of SES at synthesizing representative simulation environments and improving real-world navigation performance is evaluated via a large-scale deployment in a high-fidelity, realistic simulator and a small-scale deployment on a physical robot

    Latent Skill Discovery for Chain-of-Thought Reasoning

    Full text link
    Recent advances in Large Language Models (LLMs) have led to an emergent ability of chain-of-thought (CoT) prompting, a prompt reasoning strategy that adds intermediate rationale steps between questions and answers to construct prompts. Conditioned on these prompts, LLMs can effectively learn in context to generate rationales that lead to more accurate answers than when answering the same question directly. To design LLM prompts, one important setting, called demonstration selection, considers selecting demonstrations from an example bank. Existing methods use various heuristics for this selection, but for CoT prompting, which involves unique rationales, it is essential to base the selection upon the intrinsic skills that CoT rationales need, for instance, the skills of addition or subtraction for math word problems. To address this requirement, we introduce a novel approach named Reasoning Skill Discovery (RSD) that use unsupervised learning to create a latent space representation of rationales, called a reasoning skill. Simultaneously, RSD learns a reasoning policy to determine the required reasoning skill for a given question. This can then guide the selection of examples that demonstrate the required reasoning skills. Our approach offers several desirable properties: it is (1) theoretically grounded, (2) sample-efficient, requiring no LLM inference or manual prompt design, and (3) LLM-agnostic. Empirically, RSD outperforms existing methods by up to 6% in terms of the answer accuracy across multiple reasoning tasks

    Deep Generative Models on 3D Representations: A Survey

    Full text link
    Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and generative adversarial network (GANs), have made tremendous progress in 2D image synthesis. Recently, researchers switch their attentions from the 2D space to the 3D space considering that 3D data better aligns with our physical world and hence enjoys great potential in practice. However, unlike a 2D image, which owns an efficient representation (i.e., pixel grid) by nature, representing 3D data could face far more challenges. Concretely, we would expect an ideal 3D representation to be capable enough to model shapes and appearances in details, and to be highly efficient so as to model high-resolution data with fast speed and low memory cost. However, existing 3D representations, such as point clouds, meshes, and recent neural fields, usually fail to meet the above requirements simultaneously. In this survey, we make a thorough review of the development of 3D generation, including 3D shape generation and 3D-aware image synthesis, from the perspectives of both algorithms and more importantly representations. We hope that our discussion could help the community track the evolution of this field and further spark some innovative ideas to advance this challenging task

    Benchmarking Reinforcement Learning Techniques for Autonomous Navigation

    Full text link
    Deep reinforcement learning (RL) has brought many successes for autonomous robot navigation. However, there still exists important limitations that prevent real-world use of RL-based navigation systems. For example, most learning approaches lack safety guarantees; and learned navigation systems may not generalize well to unseen environments. Despite a variety of recent learning techniques to tackle these challenges in general, a lack of an open-source benchmark and reproducible learning methods specifically for autonomous navigation makes it difficult for roboticists to choose what learning methods to use for their mobile robots and for learning researchers to identify current shortcomings of general learning methods for autonomous navigation. In this paper, we identify four major desiderata of applying deep RL approaches for autonomous navigation: (D1) reasoning under uncertainty, (D2) safety, (D3) learning from limited trial-and-error data, and (D4) generalization to diverse and novel environments. Then, we explore four major classes of learning techniques with the purpose of achieving one or more of the four desiderata: memory-based neural network architectures (D1), safe RL (D2), model-based RL (D2, D3), and domain randomization (D4). By deploying these learning techniques in a new open-source large-scale navigation benchmark and real-world environments, we perform a comprehensive study aimed at establishing to what extent can these techniques achieve these desiderata for RL-based navigation systems

    Neuromorphic Incremental on-chip Learning with Hebbian Weight Consolidation

    Full text link
    As next-generation implantable brain-machine interfaces become pervasive on edge device, incrementally learning new tasks in bio-plasticity ways is urgently demanded for Neuromorphic chips. Due to the inherent characteristics of its structure, spiking neural networks are naturally well-suited for BMI-chips. Here we propose Hebbian Weight Consolidation, as well as an on-chip learning framework. HWC selectively masks synapse modifications for previous tasks, retaining them to store new knowledge from subsequent tasks while preserving the old knowledge. Leveraging the bio-plasticity of dendritic spines, the intrinsic self-organizing nature of Hebbian Weight Consolidation aligns naturally with the incremental learning paradigm, facilitating robust learning outcomes. By reading out spikes layer by layer and performing back-propagation on the external micro-controller unit, MLoC can efficiently accomplish on-chip learning. Experiments show that our HWC algorithm up to 23.19% outperforms lower bound that without incremental learning algorithm, particularly in more challenging monkey behavior decoding scenarios. Taking into account on-chip computing on Synsense Speck 2e chip, our proposed algorithm exhibits an improvement of 11.06%. This study demonstrates the feasibility of employing incremental learning for high-performance neural signal decoding in next-generation brain-machine interfaces.Comment: 12 pages, 6 figure

    Improving 3D-aware Image Synthesis with A Geometry-aware Discriminator

    Full text link
    3D-aware image synthesis aims at learning a generative model that can render photo-realistic 2D images while capturing decent underlying 3D shapes. A popular solution is to adopt the generative adversarial network (GAN) and replace the generator with a 3D renderer, where volume rendering with neural radiance field (NeRF) is commonly used. Despite the advancement of synthesis quality, existing methods fail to obtain moderate 3D shapes. We argue that, considering the two-player game in the formulation of GANs, only making the generator 3D-aware is not enough. In other words, displacing the generative mechanism only offers the capability, but not the guarantee, of producing 3D-aware images, because the supervision of the generator primarily comes from the discriminator. To address this issue, we propose GeoD through learning a geometry-aware discriminator to improve 3D-aware GANs. Concretely, besides differentiating real and fake samples from the 2D image space, the discriminator is additionally asked to derive the geometry information from the inputs, which is then applied as the guidance of the generator. Such a simple yet effective design facilitates learning substantially more accurate 3D shapes. Extensive experiments on various generator architectures and training datasets verify the superiority of GeoD over state-of-the-art alternatives. Moreover, our approach is registered as a general framework such that a more capable discriminator (i.e., with a third task of novel view synthesis beyond domain classification and geometry extraction) can further assist the generator with a better multi-view consistency.Comment: Accepted by NeurIPS 2022. Project page: https://vivianszf.github.io/geo

    Cross Entropy versus Label Smoothing: A Neural Collapse Perspective

    Full text link
    Label smoothing loss is a widely adopted technique to mitigate overfitting in deep neural networks. This paper studies label smoothing from the perspective of Neural Collapse (NC), a powerful empirical and theoretical framework which characterizes model behavior during the terminal phase of training. We first show empirically that models trained with label smoothing converge faster to neural collapse solutions and attain a stronger level of neural collapse. Additionally, we show that at the same level of NC1, models under label smoothing loss exhibit intensified NC2. These findings provide valuable insights into the performance benefits and enhanced model calibration under label smoothing loss. We then leverage the unconstrained feature model to derive closed-form solutions for the global minimizers for both loss functions and further demonstrate that models under label smoothing have a lower conditioning number and, therefore, theoretically converge faster. Our study, combining empirical evidence and theoretical results, not only provides nuanced insights into the differences between label smoothing and cross-entropy losses, but also serves as an example of how the powerful neural collapse framework can be used to improve our understanding of DNNs
    corecore