360 research outputs found

    Investigation of patterning effect in ultrafast SOA-based optical switches

    Get PDF

    MgNO: Efficient Parameterization of Linear Operators via Multigrid

    Full text link
    In this work, we propose a concise neural operator architecture for operator learning. Drawing an analogy with a conventional fully connected neural network, we define the neural operator as follows: the output of the ii-th neuron in a nonlinear operator layer is defined by Oi(u)=σ(∑jWiju+Bij)\mathcal O_i(u) = \sigma\left( \sum_j \mathcal W_{ij} u + \mathcal B_{ij}\right). Here, Wij\mathcal W_{ij} denotes the bounded linear operator connecting jj-th input neuron to ii-th output neuron, and the bias Bij\mathcal B_{ij} takes the form of a function rather than a scalar. Given its new universal approximation property, the efficient parameterization of the bounded linear operators between two neurons (Banach spaces) plays a critical role. As a result, we introduce MgNO, utilizing multigrid structures to parameterize these linear operators between neurons. This approach offers both mathematical rigor and practical expressivity. Additionally, MgNO obviates the need for conventional lifting and projecting operators typically required in previous neural operators. Moreover, it seamlessly accommodates diverse boundary conditions. Our empirical observations reveal that MgNO exhibits superior ease of training compared to other CNN-based models, while also displaying a reduced susceptibility to overfitting when contrasted with spectral-type neural operators. We demonstrate the efficiency and accuracy of our method with consistently state-of-the-art performance on different types of partial differential equations (PDEs)

    Mitigating spectral bias for the multiscale operator learning with hierarchical attention

    Full text link
    Neural operators have emerged as a powerful tool for learning the mapping between infinite-dimensional parameter and solution spaces of partial differential equations (PDEs). In this work, we focus on multiscale PDEs that have important applications such as reservoir modeling and turbulence prediction. We demonstrate that for such PDEs, the spectral bias towards low-frequency components presents a significant challenge for existing neural operators. To address this challenge, we propose a hierarchical attention neural operator (HANO) inspired by the hierarchical matrix approach. HANO features a scale-adaptive interaction range and self-attentions over a hierarchy of levels, enabling nested feature computation with controllable linear cost and encoding/decoding of multiscale solution space. We also incorporate an empirical H1H^1 loss function to enhance the learning of high-frequency components. Our numerical experiments demonstrate that HANO outperforms state-of-the-art (SOTA) methods for representative multiscale problems
    • …
    corecore