10 research outputs found

    Heparin Loading and Pre-endothelialization in Enhancing the Patency Rate of Electrospun Small-Diameter Vascular Grafts in a Canine Model

    No full text
    We herein proved that the two commonly used antithrombotic methods, heparin loading and pre-endothelialization could both greatly enhance the patency rate of a small-diameter graft in a canine model. Tubular grafts having an inner diameter of 4 mm were prepared by electrospinning poly­(l-lactide-co-ε-caprolactone) (P­(LLA-CL)) and heparin through a coaxial electrospinning technique. Seventy-two percent of heparin was found to be released sustainably from the graft within 14 days. To prepare the pre-endothelialized grafts, we seeded endothelial cells isolated from the femoral artery and cultured then dynamically on the lumen until a cell monolayer was formed. Digital subtraction angiography (DSA) and color Doppler flow imaging (CDFI) were used to monitor the patency without sacrificing the animals. Histological analyses revealed that following the direction of blood flow, a cell monolayer was formed at the proximal end of the heparin-loaded grafts, but such a monolayer could be found in the middle or distal region of the grafts. In contrast, the whole luminal surface of the pre-endothelialized graft was covered by a cell monolayer, suggesting the in vivo survival of the preseeded cells. This demonstrated that heparin was a comparatively simple method to achieve good patency, but the pre-endothelialization had better mechanical properties and cellular compatibility

    General Method for Generating Circular Gradients of Active Proteins on Nanofiber Scaffolds Sought for Wound Closure and Related Applications

    No full text
    Scaffolds functionalized with circular gradients of active proteins are attractive for tissue regeneration because of their enhanced capability to accelerate cell migration and/or promote neurite extension in a radial fashion. Here, we report a general method for generating circular gradients of active proteins on scaffolds composed of radially aligned nanofibers. In a typical process, the scaffold, with its central portion raised using a copper wire to take a cone shape, was placed in a container (upright or up-side-down), followed by dropwise addition of bovine serum albumin (BSA) solution into the container. As such, a circular gradient of BSA was generated along each nanofiber. The bare regions uncovered by BSA were then filled with an active protein of interest. In demonstrating their potential applications, we used different model systems to examine the effects of two types of protein gradients. While the gradient of laminin and epidermal growth factor accelerated the migration of fibroblasts and keratinocytes, respectively, from the periphery toward the center of the scaffold, the gradient of nerve growth factor promoted the radial extension of neurites from the embryonic chick dorsal root ganglion. This method for generating circular gradients of active proteins can be readily extended to different types of scaffolds to suit wound closure and related applications that involve cell migration and/or neurite extension in a radial fashion

    Thiol Click Modification of Cyclic Disulfide Containing Biodegradable Polyurethane Urea Elastomers

    No full text
    Although the thiol click reaction is an attractive tool for postpolymerization modification of thiolmers, thiol groups are easily oxidized, limiting the potential for covalent immobilization of bioactive molecules. In this study, a series of biodegradable polyurethane elastomers incorporating stable cyclic disulfide groups was developed and characterized. These poly­(ester urethane)­urea (PEUU-SS) polymers were based on polycaprolactone diol (PCL), oxidized dl-dithiothreitol (O-DTT), lysine diisocyanate (LDI), or butyl diisocyanate (BDI), with chain extension by putrescine. The ratio of O-DTT:PCL was altered to investigate different levels of potential functionalization. PEG acrylate was employed to study the mechanism and availability of both bulk and surface click modification of PEUU-SS polymers. All synthesized PEUU-SS polymers were elastic with breaking strengths of 38–45 MPa, while the PEUU-SS­(LDI) polymers were more amorphous, possessing lower moduli and relatively small permanent deformations versus PEUU-SS­(BDI) polymers. Variable bulk click modification of PEUU-SS­(LDI) polymers was achieved by controlling the amount of reduction reagent, and rapid reaction rates occurred using a one-pot, two-step process. Likewise, surface click reaction could be carried out quickly under mild, aqueous conditions. Furthermore, a maleimide-modified affinity peptide (TPS) was successfully clicked on the surface of an electrospun PEUU-SS­(BDI) fibrous sheet, which improved endothelial progenitor cell adhesion versus corresponding unmodified films. The cyclic disulfide containing biodegradable polyurethanes described provide an option for cardiovascular and other soft tissue regenerative medicine applications where a temporary, elastic scaffold with designed biofunctionality from a relatively simple click chemistry approach is desired

    BMP‑2 Derived Peptide and Dexamethasone Incorporated Mesoporous Silica Nanoparticles for Enhanced Osteogenic Differentiation of Bone Mesenchymal Stem Cells

    No full text
    Bone morphogenetic protein-2 (BMP-2), a growth factor that induces osteoblast differentiation and promotes bone regeneration, has been extensively investigated in bone tissue engineering. The peptides of bioactive domains, corresponding to residues 73–92 of BMP-2 become an alternative to reduce adverse side effects caused by the use of high doses of BMP-2 protein. In this study, BMP-2 peptide functionalized mesoporous silica nanoparticles (MSNs-pep) were synthesized by covalently grafting BMP-2 peptide on the surface of nanoparticles via an aminosilane linker, and dexamethasone (DEX) was then loaded into the channel of MSNs to construct nanoparticulate osteogenic delivery systems (DEX@MSNs-pep). The in vitro cell viability of MSNs-pep was tested with bone mesenchymal stem cells (BMSCs) exposure to different particle concentrations, revealing that the functionalized MSNs had better cytocompatibility than their bare counterparts, and the cellular uptake efficiency of MSNs-pep was remarkably larger than that of bare MSNs. The in vitro results also show that the MSNs-pep promoted osteogenic differentiation of BMSCs in terms of the levels of alkaline phosphatase (ALP) activity, calcium deposition, and expression of bone-related protein. Moreover, the osteogenic differentiation of BMSCs can be further enhanced by incorporating of DEX into MSNs-pep. After intramuscular implantation in rats for 3 weeks, the computed tomography (CT) images and histological examination indicate that this nanoparticulate osteogenic delivery system induces effective osteoblast differentiation and bone regeneration in vivo. Collectively, the BMP-2 peptide and DEX incorporated MSNs can act synergistically to enhance osteogenic differentiation of BMSCs, which have potential applications in bone tissue engineering

    Superabsorbent 3D Scaffold Based on Electrospun Nanofibers for Cartilage Tissue Engineering

    No full text
    Electrospun nanofibers have been used for various biomedical applications. However, electrospinning commonly produces two-dimensional (2D) membranes, which limits the application of nanofibers for the 3D tissue engineering scaffold. In the present study, a porous 3D scaffold (3DS-1) based on electrospun gelatin/PLA nanofibers has been prepared for cartilage tissue regeneration. To further improve the repairing effect of cartilage, a modified scaffold (3DS-2) cross-linked with hyaluronic acid (HA) was also successfully fabricated. The nanofibrous structure, water absorption, and compressive mechanical properties of 3D scaffold were studied. Chondrocytes were cultured on 3D scaffold, and their viability and morphology were examined. 3D scaffolds were also subjected to an in vivo cartilage regeneration study on rabbits using an articular cartilage injury model. The results indicated that 3DS-1 and 3DS-2 exhibited superabsorbent property and excellent cytocompatibility. Both these scaffolds present elastic property in the wet state. An in vivo study showed that 3DS-2 could enhance the repair of cartilage. The present 3D nanofibrous scaffold (3DS-2) would be promising for cartilage tissue engineering application

    Dual-Responsive Mesoporous Silica Nanoparticles Mediated Codelivery of Doxorubicin and Bcl‑2 SiRNA for Targeted Treatment of Breast Cancer

    No full text
    The combination of chemotherapy and gene therapy could induce the enhanced therapeutic efficacy in the cancer therapy. To achieve this goal, a new mesoporous silica nanoparticles (MSNs)-based codelivery system was developed for targeted simultaneous delivery of doxorubicin (DOX) and Bcl-2 small interfering RNA (siRNA) into breast cancer cells. The multifunctional MSNs (MSNs-PPPFA) were prepared by modification of polyethylenimine–polylysine copolymers (PEI-PLL) via the disulfide bonds, to which a targeting ligand folate-linked poly­(ethylene glycol) (FA-PEG) was conjugated. The multifunctional MSNs-PPPFA nanocarrier has the ability to encapsulate DOX into the mesoporous channels of MSNs, while simultaneously carrying siRNA via electrostatic interaction between cationic MSNs-PPPFA and anionic siRNA. The resulting MSNs-PPPFA nanoparticles were characterized with various techniques. The drug release results reveal that DOX released from DOX-loaded MSNs-PPPFA are both pH- and redox-responsive, and the results of cell viability and hemolysis assays show that the functional nanocarrier has excellent biocompatibility. Importantly, the folate-conjugated MSNs-PPPFA showed significantly enhanced intracellular uptake in the folate receptor overexpressed MDA-MB-231 breast cancer cells than nontargeted counterparts and thus results in more DOX and siRNA being codelivered into the cells. Furthermore, the delivery of Bcl-2 siRNA obviously downregulate the Bcl-2 protein expression, and thus targeted codelivery of DOX and Bcl-2 siRNA by DOX@MSNs-PPPFA/Bcl-2 siRNA in MDA-MB-231 cells could induce remarkable cell apoptosis as indicated by the results of cell viability and cell apoptosis assays. These results indicate that the constructed DOX@MSNs-PPPFA/Bcl-2 siRNA codelivery system is promising for targeted treatment of breast cancer

    Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(l‑Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering

    No full text
    The incorporation of microcarriers as drug delivery vehicles into polymeric scaffold for bone regeneration has aroused increasing interest. In this study, the aminated mesoporous silica nanoparticles (MSNs-NH<sub>2</sub>) were prepared and used as microcarriers for dexamethasone (DEX) loading. Poly­(l-lactic acid)/poly­(ε-caprolactone) (PLLA/PCL) nanofibrous scaffold was fabricated via thermally induced phase separation (TIPS) and served as template, onto which the drug-loaded MSNs-NH<sub>2</sub> nanoparticles were deposited by electrophoretic deposition (EPD). The physicochemical and release properties of the prepared scaffolds (DEX@MSNs-NH<sub>2</sub>/PLLA/PCL) were examined, and their osteogenic activities were also evaluated through in vitro and in vivo studies. The release of DEX from the scaffolds revealed an initial rapid release followed by a slower and sustained one. The in vitro results indicated that the DEX@MSNs-NH<sub>2</sub>/PLLA/PCL scaffold exhibited good biocompatibility to rat bone marrow-derived mesenchymal stem cells (BMSCs). Also, BMSCs cultured on the DEX@MSNs-NH<sub>2</sub>/PLLA/PCL scaffold exhibited a higher degree of osteogenic differentiation than those cultured on PLLA/PCL and MSNs-NH<sub>2</sub>/PLLA/PCL scaffolds, in terms of alkaline phosphatase (ALP) activity, mineralized matrix formation, and osteocalcin (OCN) expression. Furthermore, the in vivo results in a calvarial defect model of Sprague–Dawley (SD) rats demonstrated that the DEX@MSNs-NH<sub>2</sub>/PLLA/PCL scaffold could significantly promote calvarial defect healing compared with the PLLA/PCL scaffold. Thus, the EPD technique provides a convenient way to incorporate osteogenic agents-containing microcarriers to polymer scaffold, and thus, prepared composite scaffold could be a potential candidate for bone tissue engineering application due to its capacity for delivery of osteogenic agents

    Data_Sheet_1_Multi-omics analyses reveal interactions between the skin microbiota and skin metabolites in atopic dermatitis.PDF

    No full text
    IntroductionAtopic dermatitis (AD) is one of the most common inflammatory skin diseases. Skin microecological imbalance is an important factor in the pathogenesis of AD, but the underlying mechanism of its interaction with humans remains unclear.Methods16S rRNA gene sequencing was conducted to reveal the skin microbiota dynamics. Changes in skin metabolites were tracked by LC–MS metabolomics. We then explored the potential mechanism of interaction by analyzing the correlation between skin bacterial communities and metabolites in corresponding skin-associated samples.ResultsSamples from 18 AD patients and 18 healthy volunteers (HVs) were subjected to 16S rRNA gene sequencing and LC–MS metabolomics. AD patients had dysbiosis of the skin bacterial community with decreased species richness and evenness. The relative abundance of the genus Staphylococcus increased significantly in AD, while the abundances of the genera Propionibacterium and Brevundimonas decreased significantly. The relative abundance of the genera Staphylococcus in healthy females was significantly higher than those in healthy males, while it showed no difference in AD patients with or without lesions. The effects of AD status, sex and the presence or absence of rashes on the number of differentially abundant metabolites per capita were successively reduced. Multiple metabolites involved in purine metabolism and phenylalanine metabolism pathways (such as xanthosine/xanthine and L-phenylalanine/trans-cinnamate) were increased in AD patients. These trends were much more obvious between female AD patients and female HVs. Spearman correlation analysis revealed that the genus Staphylococcus was positively correlated with various compounds involved in phenylalanine metabolism and purine metabolic pathways. The genera Brevundimonas and Lactobacillus were negatively correlated with various compounds involved in purine metabolism, phenylalanine metabolism and sphingolipid signaling pathways.DiscussionWe suggest that purine metabolism and phenylalanine metabolism pathway disorders may play a certain role in the pathogenic mechanism of Staphylococcus aureus in AD. We also found that females are more likely to be colonized by the genus Staphylococcus than males. Differentially abundant metabolites involved in purine metabolism and phenylalanine metabolism pathways were more obvious in female. However, we should notice that the metabolites we detected do not necessarily derived from microbes, they may also origin from the host.</p

    Table_1_Multi-omics analyses reveal interactions between the skin microbiota and skin metabolites in atopic dermatitis.XLSX

    No full text
    IntroductionAtopic dermatitis (AD) is one of the most common inflammatory skin diseases. Skin microecological imbalance is an important factor in the pathogenesis of AD, but the underlying mechanism of its interaction with humans remains unclear.Methods16S rRNA gene sequencing was conducted to reveal the skin microbiota dynamics. Changes in skin metabolites were tracked by LC–MS metabolomics. We then explored the potential mechanism of interaction by analyzing the correlation between skin bacterial communities and metabolites in corresponding skin-associated samples.ResultsSamples from 18 AD patients and 18 healthy volunteers (HVs) were subjected to 16S rRNA gene sequencing and LC–MS metabolomics. AD patients had dysbiosis of the skin bacterial community with decreased species richness and evenness. The relative abundance of the genus Staphylococcus increased significantly in AD, while the abundances of the genera Propionibacterium and Brevundimonas decreased significantly. The relative abundance of the genera Staphylococcus in healthy females was significantly higher than those in healthy males, while it showed no difference in AD patients with or without lesions. The effects of AD status, sex and the presence or absence of rashes on the number of differentially abundant metabolites per capita were successively reduced. Multiple metabolites involved in purine metabolism and phenylalanine metabolism pathways (such as xanthosine/xanthine and L-phenylalanine/trans-cinnamate) were increased in AD patients. These trends were much more obvious between female AD patients and female HVs. Spearman correlation analysis revealed that the genus Staphylococcus was positively correlated with various compounds involved in phenylalanine metabolism and purine metabolic pathways. The genera Brevundimonas and Lactobacillus were negatively correlated with various compounds involved in purine metabolism, phenylalanine metabolism and sphingolipid signaling pathways.DiscussionWe suggest that purine metabolism and phenylalanine metabolism pathway disorders may play a certain role in the pathogenic mechanism of Staphylococcus aureus in AD. We also found that females are more likely to be colonized by the genus Staphylococcus than males. Differentially abundant metabolites involved in purine metabolism and phenylalanine metabolism pathways were more obvious in female. However, we should notice that the metabolites we detected do not necessarily derived from microbes, they may also origin from the host.</p

    Orthogonally Functionalizable Polyurethane with Subsequent Modification with Heparin and Endothelium-Inducing Peptide Aiming for Vascular Reconstruction

    No full text
    Surface coimmobilization modifications of blood-contacting devices with both antithrombogenic moieties and endothelium-inducing biomolecules may create a synergistic effect to improve their performance. However, it is difficult to perform covalent dual-functionalization with both biomolecules on the surface of normally used synthetic polymeric substrates. Herein, we developed and characterized an orthogonally functionalizable polymer, biodegradable elastic poly­(ester urethane)­urea with disulfide and amino groups (PUSN), which was further fabricated into electropun fibrous scaffolds and surface modified with heparin and endothelial progenitor cells (EPC) recruiting peptide (TPS). The modification effects were assessed through platelet adhesion, EPC, and HUVEC proliferation. Results showed the dual modified PUSN scaffolds demonstrated a synergistic effect of reduced platelet deposition and improved EPC proliferation in vitro study, and demonstrated their potential application in small diameter vascular regeneration
    corecore