360 research outputs found

    Algorithm of Finding Hypo-Critical Path in Network Planning

    Get PDF
    AbstractNetwork planning technology could be used to represent project plan management, such Critical Path Method (CPM for short) and Performance Evaluation Review Technique (PERT for short) etc. Aiming at problem that how to find hypo-critical path in network planning, firstly, properties of total float. free float and safety float are analyzed, and total float theorem is deduced on the basis of above analysis; and secondly, simple algorithm of finding the hypo-critical path is designed by using these properties of float and total theorem, and correctness of the algorithm is analyzed. Proof shows that the algorithm could realize effect of whole optimization could be realized by part optimization. Finally, one illustration is given to expatiate the algorithm

    Process optimization for the preparation of oligomycin-loaded folate-conjugated chitosan nanoparticles as a tumor-targeted drug delivery system using a two-level factorial design method

    Get PDF
    Oligomycin-A (Oli-A), an anticancer drug, was loaded to the folate (FA)-conjugated chitosan as a tumor-targeted drug delivery system for the purpose of overcoming the nonspecific targeting characteristics and the hydrophobicity of the compound. The two-level factorial design (2-LFD) was applied to modeling the preparation process, which was composed of five independent variables, namely FA-conjugated chitosan (FA-CS) concentration, Oli-A concentration, sodium tripolyphosphate (TPP) concentration, the mass ratio of FA-CS to TPP, and crosslinking time. The mean particle size (MPS) and the drug loading rate (DLR) of the resulting Oli-loaded FA-CS nanoparticles (FA-Oli-CSNPs) were used as response variables. The interactive effects of the five independent variables on the response variables were studied. The characteristics of the nanoparticles, such as amount of FA conjugation, drug entrapment rate (DER), DLR, surface morphology, and release kinetics properties in vitro were investigated. The FA-Oli-CSNPs with MPS of 182.6 nm, DER of 17.3%, DLR of 58.5%, and zeta potential (ZP) of 24.6 mV were obtained under optimum conditions. The amount of FA conjugation was 45.9 mg/g chitosan. The FA-Oli-CSNPs showed sustained-release characteristics for 576 hours in vitro. The results indicated that FA-Oli-CSNPs obtained as a targeted drug delivery system could be effective in the therapy of leukemia in the future

    Dietary Flaxseed Oil Prevents Western-Type Diet-Induced Nonalcoholic Fatty Liver Disease in Apolipoprotein-E Knockout Mice

    Get PDF
    The prevalence of nonalcoholic fatty liver disease (NAFLD) has dramatically increased globally during recent decades. Intake of n-3 polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3), is believed to be beneficial to the development of NAFLD. However, little information is available with regard to the effect of flaxseed oil rich in Ξ±-linolenic acid (ALA, C18:3n-3), a plant-derived n-3 PUFA, in improving NAFLD. This study was to gain the effect of flaxseed oil on NAFLD and further investigate the underlying mechanisms. Apolipoprotein-E knockout (apoE-KO) mice were given a normal chow diet, a western-type high-fat and high-cholesterol diet (WTD), or a WTD diet containing 10% flaxseed oil (WTD + FO) for 12 weeks. Our data showed that consumption of flaxseed oil significantly improved WTD-induced NAFLD, as well as ameliorated impaired lipid homeostasis, attenuated oxidative stress, and inhibited inflammation. These data were associated with the modification effects on expression levels of genes involved in de novo fat synthesis (SREBP-1c, ACC), triacylglycerol catabolism (PPARΞ±, CPT1A, and ACOX1), inflammation (NF-ΞΊB, IL-6, TNF-Ξ±, and MCP-1), and oxidative stress (ROS, MDA, GSH, and SOD)

    Preparation, characterization and targeting of micronized 10-hydroxycamptothecin-loaded folate-conjugated human serum albumin nanoparticles to cancer cells

    Get PDF
    Qingyong Li, Chen Liu, Xiuhua Zhao, Yuangang Zu, Ying Wang, Baoyou Zhang, Dongmei Zhao, Qi Zhao, Lin Su, Yang Gao, Baihe SunKey Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang, People's Republic of ChinaBackground: The purpose of this study was to develop a method for targeted delivery of 10-hydroxycamptothecin (HCPT)-loaded nanoparticles (NPs) to cancer cells.Methods: We first used a supercritical antisolvent process to prepare micronized HCPT (nHCPT), and then folate-conjugated human serum albumin (HSA) nHCPT-loaded NPs (FA-HSA-nHCPT-NPs) were prepared using a NP-coated method combined with a desolvation technique. The amount of folate conjugation was 16 µg · mg-1 HSA.Results: The particle size of the spherical nHCPT microparticles obtained was 118.5 ± 6.6 nm. The particle size and zeta potential of the FA-HSA-nHCPT-NPs were 233.9 ± 1.2 nm and -25.23 ± 2.98 mV, respectively. The FA-HSA-nHCPT-NPs exhibited a smooth surface and a distinct spherical shape, and the results of differential scanning calorimetry and X-ray diffraction indicated that the FA-HSA-nHCPT-NPs presented in a nanostructured amorphous state. The FA-HSA-nHCPT-NPs showed sustained-release characteristics for 120 hours in vitro, with a drug-loading content of 7.3% and an encapsulating efficiency of 79.1%.Conclusion: The FA-NPs were effective delivery systems for uptake by SGC7901 cells compared with folate-free NPs. These results suggest that a NP-coated method combined with a desolvation technique is effective for preparing NPs with drugs having poor solubility in water and most organic solvents, using albumin as the wall material. FA-HSA-NPs are a stable delivery system and have the potential for targeted delivery of anticancer drugs.Keywords: nanoparticle-coated, desolvation technique, 10-hydroxycamptothecin, human serum albumin, folate, targeted delivery&nbsp

    Microwave-Assisted Simultaneous Extraction of Luteolin and Apigenin from Tree Peony Pod and Evaluation of Its Antioxidant Activity

    Get PDF
    An efficient microwave-assisted extraction (MAE) technique was employed in simultaneous extraction of luteolin and apigenin from tree peony pod. The MAE procedure was optimized using response surface methodology (RSM) and compared with other conventional extraction techniques of macerate extraction (ME) and heat reflux extraction (HRE). The optimal conditions of MAE were as follows: employing 70% ethanol volume fraction as solvent, soaking time of 4 h, liquid-solid ratio of 10 (mL/g), microwave irradiation power of 265 W, microwave irradiation time of 9.6 min, and 3 extraction cycles. Under the optimal conditions, 151 μg/g luteolin and 104 μg/g apigenin were extracted from the tree peony pod. Compared with ME and HRE, MAE gave the highest extraction efficiency. The antioxidant activities of the extracts obtained by MAE, ME, and HRE were evaluated using a 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) free radical-scavenging assay, a ferric reducing antioxidant power assay (FRAP), and a reducing power assay. Meanwhile, the structural changes of the unprocessed and processed tree peony pod samples were analyzed by scanning electron microscopy

    Optimization of Ultrahigh Pressure Assisted Micellar Extraction of Taxifolin from Larch

    Get PDF
    In this study, in order to simplify the extraction process of taxifolin, cut costs and energy sources, improve extraction efficiency, and promote comprehensive application of taxifolin. Taxifolin was extracted from the trunk of Larix gemlini by ultra-high pressure assisted micellar green solvent extraction technology, using Larix gemlini of Heilongjiang Province as raw material. Based on the total content of taxifolin in different parts of larch root and trunk, tea saponin was selected as the most appropriate surfactant from candidate surfactants. The extraction process was optimized by response surface experiment, investigating effects of solid-liquid ratio, extraction pressure, extraction times and micellar concentration on the extraction rate of taxifolin. Results showed that, the optimal extraction process conditions were selected as follows: The tea saponin concentration was 8%, the solid-liquid ratio was 1:11.5, the extraction pressure was 157 MPa, the extraction times were 3 times, the holding time was 5 min. The experiment was repeated for 3 times under the optimum condition, and the actual extraction rate of taxifolin was 84.35%Β±1.2%, which was basically consistent with the predicted value of 84.98%. Compared with different extraction processes such as microwave extraction, ultrasonic extraction and reflux extraction, the energy consumption and CO2 emission per unit of raw material of ultra-high pressure assisted micelle extraction were the lowest, which was 1.64Γ—10βˆ’4 kWΒ·hΒ·gβˆ’1 and 1.29Γ—10βˆ’4 kg/g respectively. To summarize, the extraction of taxifolin from larch by ultra-high pressure assisted micellar green solvent extraction technology could be used widely which was environmentally friendly, simple, stable, reasonable and reliable

    Association between long-term exposure to fine particulate matter constituents and progression of cerebral blood flow velocity in Beijing: Modifying effect of greenness

    Get PDF
    Few studies have explored the effects of fine particulate matter (PM2.5) and its constituents on the progression of cerebral blood flow velocity (BFV) and the potential modifying role of greenness. In this study, we investigated the association of PM2.5 and its constituents, including sulfate (SO42βˆ’), nitrate (NO3βˆ’), ammonium (NH4+), organic matter (OM), and black carbon (BC), with the progression of BFV in the middle cerebral artery. Participants from the Beijing Health Management Cohort who underwent at least two transcranial Doppler sonography examinations during 2015–2020 were recruited. BFV change and BFV change rate were used to define the progression of cerebral BFV. Linear mixed effects models were employed to analyze the data, and the weighted quantile sum regression assessed the contribution of PM2.5 constituents. Additionally, greenness was examined as a modifier. Among the examined constituents, OM exhibited the strongest association with BFV progression. An interquartile range increase in PM2.5 and OM exposure concentrations was associated with a decrease of βˆ’16.519 cm/s (95% CI: βˆ’17.837, βˆ’15.201) and βˆ’15.403 cm/s (95% CI: βˆ’16.681, βˆ’14.126) in BFV change, and βˆ’10.369 cm/s/year (95% CI: βˆ’11.387, βˆ’9.352) and βˆ’9.615 cm/s/year (95% CI: βˆ’10.599, βˆ’8.632) in BFV change rate, respectively. Furthermore, stronger associations between PM2.5 and BFV progression were observed in individuals working in areas with lower greenness, those aged under 45 years, and females. In conclusion, reducing PM2.5 levels in the air, particularly the OM constituent, and enhancing greenness could potentially contribute to the protection of cerebrovascular health
    • …
    corecore