8,612 research outputs found

    Storytelling Security: User-Intention Based Traffic Sanitization

    Get PDF
    Malicious software (malware) with decentralized communication infrastructure, such as peer-to-peer botnets, is difficult to detect. In this paper, we describe a traffic-sanitization method for identifying malware-triggered outbound connections from a personal computer. Our solution correlates user activities with the content of outbound traffic. Our key observation is that user-initiated outbound traffic typically has corresponding human inputs, i.e., keystroke or mouse clicks. Our analysis on the causal relations between user inputs and packet payload enables the efficient enforcement of the inter-packet dependency at the application level. We formalize our approach within the framework of protocol-state machine. We define new application-level traffic-sanitization policies that enforce the inter-packet dependencies. The dependency is derived from the transitions among protocol states that involve both user actions and network events. We refer to our methodology as storytelling security. We demonstrate a concrete realization of our methodology in the context of peer-to-peer file-sharing application, describe its use in blocking traffic of P2P bots on a host. We implement and evaluate our prototype in Windows operating system in both online and offline deployment settings. Our experimental evaluation along with case studies of real-world P2P applications demonstrates the feasibility of verifying the inter-packet dependencies. Our deep packet inspection incurs overhead on the outbound network flow. Our solution can also be used as an offline collect-and-analyze tool

    Energy-saving Resource Allocation by Exploiting the Context Information

    Full text link
    Improving energy efficiency of wireless systems by exploiting the context information has received attention recently as the smart phone market keeps expanding. In this paper, we devise energy-saving resource allocation policy for multiple base stations serving non-real-time traffic by exploiting three levels of context information, where the background traffic is assumed to occupy partial resources. Based on the solution from a total energy minimization problem with perfect future information,a context-aware BS sleeping, scheduling and power allocation policy is proposed by estimating the required future information with three levels of context information. Simulation results show that our policy provides significant gains over those without exploiting any context information. Moreover, it is seen that different levels of context information play different roles in saving energy and reducing outage in transmission.Comment: To be presented at IEEE PIMRC 2015, Hong Kong. This work was supported by National Natural Science Foundation of China under Grant 61120106002 and National Basic Research Program of China under Grant 2012CB31600

    Analysis of Crowdsourced Sampling Strategies for HodgeRank with Sparse Random Graphs

    Full text link
    Crowdsourcing platforms are now extensively used for conducting subjective pairwise comparison studies. In this setting, a pairwise comparison dataset is typically gathered via random sampling, either \emph{with} or \emph{without} replacement. In this paper, we use tools from random graph theory to analyze these two random sampling methods for the HodgeRank estimator. Using the Fiedler value of the graph as a measurement for estimator stability (informativeness), we provide a new estimate of the Fiedler value for these two random graph models. In the asymptotic limit as the number of vertices tends to infinity, we prove the validity of the estimate. Based on our findings, for a small number of items to be compared, we recommend a two-stage sampling strategy where a greedy sampling method is used initially and random sampling \emph{without} replacement is used in the second stage. When a large number of items is to be compared, we recommend random sampling with replacement as this is computationally inexpensive and trivially parallelizable. Experiments on synthetic and real-world datasets support our analysis

    HodgeRank with Information Maximization for Crowdsourced Pairwise Ranking Aggregation

    Full text link
    Recently, crowdsourcing has emerged as an effective paradigm for human-powered large scale problem solving in various domains. However, task requester usually has a limited amount of budget, thus it is desirable to have a policy to wisely allocate the budget to achieve better quality. In this paper, we study the principle of information maximization for active sampling strategies in the framework of HodgeRank, an approach based on Hodge Decomposition of pairwise ranking data with multiple workers. The principle exhibits two scenarios of active sampling: Fisher information maximization that leads to unsupervised sampling based on a sequential maximization of graph algebraic connectivity without considering labels; and Bayesian information maximization that selects samples with the largest information gain from prior to posterior, which gives a supervised sampling involving the labels collected. Experiments show that the proposed methods boost the sampling efficiency as compared to traditional sampling schemes and are thus valuable to practical crowdsourcing experiments.Comment: Accepted by AAAI201

    Sparse Recovery via Differential Inclusions

    Full text link
    In this paper, we recover sparse signals from their noisy linear measurements by solving nonlinear differential inclusions, which is based on the notion of inverse scale space (ISS) developed in applied mathematics. Our goal here is to bring this idea to address a challenging problem in statistics, \emph{i.e.} finding the oracle estimator which is unbiased and sign-consistent using dynamics. We call our dynamics \emph{Bregman ISS} and \emph{Linearized Bregman ISS}. A well-known shortcoming of LASSO and any convex regularization approaches lies in the bias of estimators. However, we show that under proper conditions, there exists a bias-free and sign-consistent point on the solution paths of such dynamics, which corresponds to a signal that is the unbiased estimate of the true signal and whose entries have the same signs as those of the true signs, \emph{i.e.} the oracle estimator. Therefore, their solution paths are regularization paths better than the LASSO regularization path, since the points on the latter path are biased when sign-consistency is reached. We also show how to efficiently compute their solution paths in both continuous and discretized settings: the full solution paths can be exactly computed piece by piece, and a discretization leads to \emph{Linearized Bregman iteration}, which is a simple iterative thresholding rule and easy to parallelize. Theoretical guarantees such as sign-consistency and minimax optimal l2l_2-error bounds are established in both continuous and discrete settings for specific points on the paths. Early-stopping rules for identifying these points are given. The key treatment relies on the development of differential inequalities for differential inclusions and their discretizations, which extends the previous results and leads to exponentially fast recovering of sparse signals before selecting wrong ones.Comment: In Applied and Computational Harmonic Analysis, 201
    • …
    corecore