31 research outputs found

    In Situ Crystallization Synthesis of CsPbBr<sub>3</sub> Perovskite Quantum Dot-Embedded Glasses with Improved Stability for Solid-State Lighting and Random Upconverted Lasing

    No full text
    All-inorganic cesium lead bromide CsPbBr<sub>3</sub> perovskite quantum dots (QDs) are emerging as potential candidates for their applications in optoelectronic devices but they suffer from poor long-term stability due to their high sensitivity to UV irradiation, heat, and especially to moisture. Although great advances in improving stability of perovskite QDs have been achieved by surface modification or encapsulation in polymer and silica, they are not sufficiently refrained from external environment due to nondense structures of these protective layers. In this work, in situ nanocrystallization strategy is developed to directly grow CsPbBr<sub>3</sub> QDs among a specially designed TeO<sub>2</sub>-based glass matrix. As a result, QD-embedded glass shows typical bright green emission assigned to exciton recombination radiation and significant improvement of photon/thermal stability and water resistance due to the effective protecting role of dense structural glass. Particularly, ∼90% of emission intensity is even remained after immersing QD-embedded glass in water up to 120 h, enabling them to find promising applications in white-light-emitting device with superior color stability and low-threshold random upconverted laser under ambient air condition

    Automated in Vivo Nanosensing of Breath-Borne Protein Biomarkers

    No full text
    Toxicology and bedside medical condition monitoring is often desired to be both ultrasensitive and noninvasive. However, current biomarker analyses for these purposes are mostly offline and fail to detect low marker quantities. Here, we report a system called dLABer (detection of living animal’s exhaled breath biomarker) that integrates living rats, breath sampling, microfluidics, and biosensors for the automated tracking of breath-borne biomarkers. Our data show that dLABer could selectively detect (online) and report differences (of up to 10<sup>3</sup>-fold) in the levels of inflammation agent interleukin-6 (IL-6) exhaled by rats injected with different ambient particulate matter (PM). The dLABer system was further shown to have an up to 10<sup>4</sup> higher signal-to-noise ratio than that of the enzyme-linked immunosorbent assay (ELISA) when analyzing the same breath samples. In addition, both blood-borne IL-6 levels analyzed via ELISA in rats injected with different PM extracts and PM toxicity determined by a dithiothreitol (DTT) assay agreed well with those determined by the dLABer system. Video recordings further verified that rats exposed to PM with higher toxicity (according to a DTT assay and as revealed by dLABer) appeared to be less physically active. All the data presented here suggest that the dLABer system is capable of real-time, noninvasive monitoring of breath-borne biomarkers with ultrasensitivity. The dLABer system is expected to revolutionize pollutant health effect studies and bedside disease diagnosis as well as physiological condition monitoring at the single-protein level

    Table1_Genetic diversity, tissue-specific expression, and functional analysis of the ATP7A gene in sheep.XLSX

    No full text
    In humans, variation of the ATP7A gene may cause cranial exostosis, which is similar to “human horn,” but the function of the ATP7A gene in sheep is still unknown. Tissue expression patterns and potential functional loci analysis of the ATP7A gene could help understand its function in sheep horn. In this study, we first identified tissue, sex, breed, and species-specific expression of the ATP7A gene in sheep based on the RNA-sequencing (RNA-seq) data. Second, the potential functional sites of the ATP7A gene were analyzed by using the whole genome sequencing (WGS) data of 99 sheep from 10 breeds. Last, the allele-specific expression of the ATP7A gene was explored. Our result showed the ATP7A gene has significantly higher expression in the big horn than in the small horn, and the ATP7A gene has high expression in the horn and skin, suggesting that this gene may be related to the horn. The PCA results show that the region around the ATP7A can distinguish horned and hornless groups to some extent, further indicating that the ATP7A may be related to horns. When compared with other species, we find seven ruminate specific amino acid sites of the ATP7A protein, which can be important to the ruminate horn. By analyzing WGS, we found 6 SNP sites with significant differences in frequency in horned and hornless populations, and most of these variants are present in the intron. But we still find some potential functional sites, including three missenses, three synonymous mutations, and four Indels. Finally, by combining the RNA-seq and WGS functional loci results, we find three mutations that showed allele-specific expression between big and small horns. This study shows that the ATP7A gene in sheep may be related to horn size, and several potential functional sites we identified here can be useful molecular markers for sheep horn breeding.</p

    Automated in Vivo Nanosensing of Breath-Borne Protein Biomarkers

    No full text
    Toxicology and bedside medical condition monitoring is often desired to be both ultrasensitive and noninvasive. However, current biomarker analyses for these purposes are mostly offline and fail to detect low marker quantities. Here, we report a system called dLABer (detection of living animal’s exhaled breath biomarker) that integrates living rats, breath sampling, microfluidics, and biosensors for the automated tracking of breath-borne biomarkers. Our data show that dLABer could selectively detect (online) and report differences (of up to 10<sup>3</sup>-fold) in the levels of inflammation agent interleukin-6 (IL-6) exhaled by rats injected with different ambient particulate matter (PM). The dLABer system was further shown to have an up to 10<sup>4</sup> higher signal-to-noise ratio than that of the enzyme-linked immunosorbent assay (ELISA) when analyzing the same breath samples. In addition, both blood-borne IL-6 levels analyzed via ELISA in rats injected with different PM extracts and PM toxicity determined by a dithiothreitol (DTT) assay agreed well with those determined by the dLABer system. Video recordings further verified that rats exposed to PM with higher toxicity (according to a DTT assay and as revealed by dLABer) appeared to be less physically active. All the data presented here suggest that the dLABer system is capable of real-time, noninvasive monitoring of breath-borne biomarkers with ultrasensitivity. The dLABer system is expected to revolutionize pollutant health effect studies and bedside disease diagnosis as well as physiological condition monitoring at the single-protein level

    Data_Sheet_3_A body map of super-enhancers and their function in pig.PDF

    No full text
    IntroductionSuper-enhancers (SEs) are clusters of enhancers that act synergistically to drive the high-level expression of genes involved in cell identity and function. Although SEs have been extensively investigated in humans and mice, they have not been well characterized in pigs.MethodsHere, we identified 42,380 SEs in 14 pig tissues using chromatin immunoprecipitation sequencing, and statistics of its overall situation, studied the composition and characteristics of SE, and explored the influence of SEs characteristics on gene expression.ResultsWe observed that approximately 40% of normal enhancers (NEs) form SEs. Compared to NEs, we found that SEs were more likely to be enriched with an activated enhancer and show activated functions. Interestingly, SEs showed X chromosome depletion and short interspersed nuclear element enrichment, implying that SEs play an important role in sex traits and repeat evolution. Additionally, SE-associated genes exhibited higher expression levels and stronger conservation than NE-associated genes. However, genes with the largest SEs had higher expression levels than those with the smallest SEs, indicating that SE size may influence gene expression. Moreover, we observed a negative correlation between SE gene distance and gene expression, indicating that the proximity of SEs can affect gene activity. Gene ontology enrichment and motif analysis revealed that SEs have strong tissue-specific activity. For example, the CORO2B gene with a brain-specific SE shows strong brain-specific expression, and the phenylalanine hydroxylase gene with liver-specific SEs shows strong liver-specific expression.DiscussionIn this study, we illustrated a body map of SEs and explored their functions in pigs, providing information on the composition and tissue-specific patterns of SEs. This study can serve as a valuable resource of gene regulatory and comparative analyses to the scientific community and provides a theoretical reference for genetic control mechanisms of important traits in pigs.</p

    Data_Sheet_1_A body map of super-enhancers and their function in pig.PDF

    No full text
    IntroductionSuper-enhancers (SEs) are clusters of enhancers that act synergistically to drive the high-level expression of genes involved in cell identity and function. Although SEs have been extensively investigated in humans and mice, they have not been well characterized in pigs.MethodsHere, we identified 42,380 SEs in 14 pig tissues using chromatin immunoprecipitation sequencing, and statistics of its overall situation, studied the composition and characteristics of SE, and explored the influence of SEs characteristics on gene expression.ResultsWe observed that approximately 40% of normal enhancers (NEs) form SEs. Compared to NEs, we found that SEs were more likely to be enriched with an activated enhancer and show activated functions. Interestingly, SEs showed X chromosome depletion and short interspersed nuclear element enrichment, implying that SEs play an important role in sex traits and repeat evolution. Additionally, SE-associated genes exhibited higher expression levels and stronger conservation than NE-associated genes. However, genes with the largest SEs had higher expression levels than those with the smallest SEs, indicating that SE size may influence gene expression. Moreover, we observed a negative correlation between SE gene distance and gene expression, indicating that the proximity of SEs can affect gene activity. Gene ontology enrichment and motif analysis revealed that SEs have strong tissue-specific activity. For example, the CORO2B gene with a brain-specific SE shows strong brain-specific expression, and the phenylalanine hydroxylase gene with liver-specific SEs shows strong liver-specific expression.DiscussionIn this study, we illustrated a body map of SEs and explored their functions in pigs, providing information on the composition and tissue-specific patterns of SEs. This study can serve as a valuable resource of gene regulatory and comparative analyses to the scientific community and provides a theoretical reference for genetic control mechanisms of important traits in pigs.</p

    Data_Sheet_2_A body map of super-enhancers and their function in pig.PDF

    No full text
    IntroductionSuper-enhancers (SEs) are clusters of enhancers that act synergistically to drive the high-level expression of genes involved in cell identity and function. Although SEs have been extensively investigated in humans and mice, they have not been well characterized in pigs.MethodsHere, we identified 42,380 SEs in 14 pig tissues using chromatin immunoprecipitation sequencing, and statistics of its overall situation, studied the composition and characteristics of SE, and explored the influence of SEs characteristics on gene expression.ResultsWe observed that approximately 40% of normal enhancers (NEs) form SEs. Compared to NEs, we found that SEs were more likely to be enriched with an activated enhancer and show activated functions. Interestingly, SEs showed X chromosome depletion and short interspersed nuclear element enrichment, implying that SEs play an important role in sex traits and repeat evolution. Additionally, SE-associated genes exhibited higher expression levels and stronger conservation than NE-associated genes. However, genes with the largest SEs had higher expression levels than those with the smallest SEs, indicating that SE size may influence gene expression. Moreover, we observed a negative correlation between SE gene distance and gene expression, indicating that the proximity of SEs can affect gene activity. Gene ontology enrichment and motif analysis revealed that SEs have strong tissue-specific activity. For example, the CORO2B gene with a brain-specific SE shows strong brain-specific expression, and the phenylalanine hydroxylase gene with liver-specific SEs shows strong liver-specific expression.DiscussionIn this study, we illustrated a body map of SEs and explored their functions in pigs, providing information on the composition and tissue-specific patterns of SEs. This study can serve as a valuable resource of gene regulatory and comparative analyses to the scientific community and provides a theoretical reference for genetic control mechanisms of important traits in pigs.</p

    DEGs in the Pre and Post samples.

    No full text
    <p>Significantly up- or downregulated genes are marked in blue, and genes showing no significant differential expression are marked in red, using the threshold of FDR≤0.001 and log<sub>2</sub>Ratio≥1.</p
    corecore