22 research outputs found

    Wintertime evolution of the temperature inversion in the Colorado Plateau basin.

    Get PDF
    ABSTRACT The Colorado Plateau, surrounded by a ring of mountains, has the meteorological characteristics of a basin. Deep, persistent potential temperature inversions form in this basin in winter. The formation, maintenance, and dissipation of these inversions are investigated using two to four times daily radiosonde data from the winter and early spring of 1989-90. In winter, inversion evolution is forced primarily by synoptic-scale events. The buildup takes place over one or more days as warm air advection occurs above the basin with the approach of high pressure ridges. The breakup, which occurs with cold air advection above the basin as troughs approach, can occur over periods less than 12 h. Many approaching troughs modulate inversion strength and depth but are too weak to destroy the persistent inversion. Later in the winter and spring, the radiation-induced nocturnal inversion is destroyed nearly every day by the daytime growth of convective boundary layers from the basin floor and sidewalls

    The inter‐annual variability of southerly low‐level jets in North America

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135612/1/joc4708_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135612/2/joc4708.pd

    Low-level jet climatology from enhanced Rawinsonde observations at a site in the Southern Great Plains.

    No full text
    ABSTRACT A climatology of the Great Plains low-level jet (LLJ) is developed from 2 yr of research rawinsonde data obtained up to eight times per day at a site in north-central Oklahoma. These data have better height and time resolution than earlier studies, and show that jets are stronger than previously reported and that the heights of maximum wind speed are closer to the ground. LLJs are present in 47% of the warm season soundings and 45% of the cold season soundings. More than 50% of the LLJs have wind maxima below 500 m above ground level (AGL). Because the 404-MHz radar profiler network in the central United States has its first data points at 500 m AGL, it is likely to miss some LLJ events and will have inadequate vertical resolution of LLJ wind structure. Previous studies have identified LLJs on the basis of a wind speed profile criterion. This criterion fails to separate the classical southerly LLJs from the less frequent northerly jets, which differ in both structure and evolution. Classical southerly jets are more frequent; they occur year round, with the highest frequency in the summer and at night. Southerly LLJ wind speed maxima are most frequently found at 300-600 m AGL, and peak speeds, typically between 15 and 21 m s Ϫ1 , are attained at 0200 CST. The height of the wind speed maximum varies little during nighttime-a period when surface-based inversions grow in depth but generally remain below the jet. Winds at the nose of the southerly jets exhibit a distinct diurnal clockwise turning in wind direction and an oscillation in speed. Northerly jets occur year round. They are generally associated with cold air outbreaks and are found in the cold air behind southward-moving cold fronts. In winter, their frequency of occurrence rivals that of the southerly jets. Their occurrence, however, is less dependent on time of day, with a weak daytime maximum. They are more variable in the heights of their wind speed maxima, are associated more frequently with elevated frontal inversions, and do not exhibit a clockwise turning with time. The heights of the jet speed maxima are found to increase with distance behind the surface cold front

    Impact of revised and potential future albedo estimates on CCSM3 simulations of growing-season surface temperature fields for North America

    Get PDF
    Recently published albedo research has resulted in improved growing-season albedo estimates for forest and grassland vegetation. The impact of these improved estimates on the ability of climate models to simulate growing-season surface temperature patterns is unknown. We have developed a set of current-climate surface temperature scenarios for North America using the Community Climate System Model – Version 3 (CCSM3). Simulation results suggest that modifications to the default CCSM3 radiative parameters that are consistent with more recent accurate measurements of albedo values for grasslands and needle-leaf deciduous trees (NDTs) can reduce the overall growing-season surface temperature bias over North America in CCSM3 simulations

    First observations of turbulence generated by grass fires

    No full text
    Wildland fires radically modify the atmospheric boundary layer by inducing strong fire-atmosphere interactions. These interactions lead to intense turbulence production in and around the fire front. Two field experiments were conducted in tall-grass fuels to quantify turbulence generation during the passage of wind-driven fire fronts. Observations showed that the measured turbulence generated by the fires was five times greater than the turbulence in the ambient environment. The production of the turbulence at the surface near the fire front was caused by increased variance of the ambient wind, while the buoyancy was strongest at higher levels within the fire plume. Immediately after the fire front passage, turbulence kinetic energy decreased to ambient levels and was associated with strong downdrafts that occurred behind the fire front

    Forcing mechanisms for Washoe Zephyr - a daytime downslope wind phenomenon in the Great Basin east of the Sierra Nevada

    No full text
    This paper investigates the formation mechanisms for a local wind phenomenon known as Washoe Zephyr that occurs frequently in the lee of the Sierra Nevada. Unlike the typical thermally driven slope flows with upslope wind during daytime and downslope at night, the Washoe Zephyr winds blow down the lee slopes of the Sierra Nevada in the afternoon against the local pressure gradient. Long-term hourly surface wind data from several stations on the eastern slope of the Sierra Nevada and rawinsonde sounding data in the region are analyzed and numerical simulations are performed to test the suggested hypotheses on the formation mechanisms for this interesting phenomenon. The results from surface and upper-air climate data analyses and numerical modeling indicate that the Washoe Zephyr is primarily a result of a regional-scale pressure gradient that develops because of asymmetric heating of the atmosphere between the western side of the Sierra Nevada and the elevated, semiarid central Nevada and Great Basin on the eastern side of the Sierra Nevada. The frequent influence of the Pacific high on California in the summer season helps to enhance this pressure gradient and therefore strengthen the flow. Westerly synoptic-scale winds over the Sierra Nevada and the associated downward momentum transfer are not necessary for its development, but strong westerly winds aloft work in concert with the regional-scale pressure gradient to produce the strongest Washoe Zephyr events. [ABSTRACT FROM AUTHOR] . Copyright of Journal of Applied Meteorology & Climatology is the property of American Meteorological Society and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder\u27s express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
    corecore