2 research outputs found

    Classification and Adulteration Detection of Vegetable Oils Based on Fatty Acid Profiles

    No full text
    The detection of adulteration of high priced oils is a particular concern in food quality and safety. Therefore, it is necessary to develop authenticity detection method for protecting the health of customers. In this study, fatty acid profiles of five edible oils were established by gas chromatography coupled with mass spectrometry (GC/MS) in selected ion monitoring mode. Using mass spectral characteristics of selected ions and equivalent chain length (ECL), 28 fatty acids were identified and employed to classify five kinds of edible oils by using unsupervised (principal component analysis and hierarchical clustering analysis), supervised (random forests) multivariate statistical methods. The results indicated that fatty acid profiles of these edible oils could classify five kinds of edible vegetable oils into five groups and are therefore employed to authenticity assessment. Moreover, adulterated oils were simulated by Monte Carlo method to establish simultaneous adulteration detection model for five kinds of edible oils by random forests. As a result, this model could identify five kinds of edible oils and sensitively detect adulteration of edible oil with other vegetable oils about the level of 10%

    Analysis of Influenza Virus Receptor Specificity Using Glycan-Functionalized Gold Nanoparticles

    No full text
    Recent cases of human infection with avian influenza H5N1 and H7N9 viruses underscore an urgent need for techniques that can rapidly assess their potential threat to the humans. Determination of the receptor-binding property of influenza virus is crucial to direct viral control and prevention measures. Current methods to perform this analysis are dependent on immuno­analytical strategies that use unstable biological components and complex procedures. We have developed a facile colorimetric assay to determine the interaction of the viral hemagglutinin (HA) protein with host glycan receptors using glycan-functionalized gold nanoparticles (gGNPs). This method is based on the color and absorbance changes of gold probes when the solution is simply mixed with HAs or intact viruses. The resulting sensitivity and selectivity has enabled HA/virus binding to various glycan structures to be differentiated visually and rapidly. Using this system, we have screened, in parallel, the receptor specificity of eight representative human and avian viral HAs and three whole viruses including an emerging H7N9 strain. Our results reveal the detailed receptor-binding profiles of H7N9 virus and its HA and show that they effectively bind to human-type receptors. This gGNP-based assay represents a strategy that would be helpful for developing simple and sensitive systems to probe glycan-mediated biological processes
    corecore