1,704 research outputs found

    Cooling mechanical resonators to quantum ground state from room temperature

    Full text link
    Ground-state cooling of mesoscopic mechanical resonators is a fundamental requirement for test of quantum theory and for implementation of quantum information. We analyze the cavity optomechanical cooling limits in the intermediate coupling regime, where the light-enhanced optomechanical coupling strength is comparable with the cavity decay rate. It is found that in this regime the cooling breaks through the limits in both the strong and weak coupling regimes. The lowest cooling limit is derived analytically at the optimal conditions of cavity decay rate and coupling strength. In essence, cooling to the quantum ground state requires Qm>2.4nthQ_{\mathrm{m}}>2.4n_{\mathrm{th}% }, with QmQ_{\mathrm{m}} being the mechanical quality factor and nthn_{\mathrm{th}} being the thermal phonon number. Remarkably, ground-state cooling is achievable starting from room temperature, when mechanical QQ-frequency product Qmν>1.5×1013Q_{\mathrm{m}}{\nu>1.5}\times10^{13}, and both of the cavity decay rate and the coupling strength exceed the thermal decoherence rate. Our study provides a general framework for optimizing the backaction cooling of mesoscopic mechanical resonators

    Electrical Detection of Ferroelectric-like Metals through Nonlinear Hall Effect

    Get PDF
    Ferroelectric-like metals are a relatively rare class of materials that have ferroelectric-like distortion and metallic conductivity. LiOsO3_3 is the first demonstrated and the most investigated ferroelectric-like metal. The presence of free carriers makes them difficult to be studied by traditional ferroelectric techniques. In this paper, using the symmetry analysis and first-principles calculations, we demonstrate that the ferroelectric-like transition of LiOsO3_3 can be probed by a kind of electrical transport method based on nonlinear Hall effect. The Berry curvature dipole exists in the ferroelectric-like phase, and it can lead to a measurable nonlinear Hall conductance with a conventional experimental setup. However, the symmetry of the paraelectric-like phase LiOsO3_3 vanishes the Berry curvature dipole. The Berry curvature dipole shows a strong dependence on the polar displacement, which might be helpful for the detection of polar order. The nonlinear Hall effect provides an effective method for the detection of phase transition in the study of the ferroelectric-like metals and promotes them to be applied in the ferroelectric-like electronic devices

    Electrical detection of ferroelectriclike metals through the nonlinear Hall effect

    Get PDF
    Ferroelectriclike metals are a relatively rare class of materials that have ferroelectriclike distortion and metallic conductivity. LiOsO3 is the first demonstrated and the most investigated ferroelectriclike metal. The presence of free carriers makes them difficult to be studied by traditional ferroelectric techniques. In this paper, using symmetry analysis and first-principles calculations, we demonstrate that the ferroelectriclike transition of LiOsO3 can be probed by a kind of electrical transport method based on nonlinear Hall effect. The Berry curvature dipole exists in the ferroelectriclike phase and it can lead to a measurable nonlinear Hall conductance with a conventional experimental setup. However, the symmetry of the paraelectriclike phase LiOsO3 vanishes the Berry curvature dipole. The Berry curvature dipole shows a strong dependence on the polar displacement, which might be helpful for the detection of polar order. The nonlinear Hall effect provides an effective method for the detection of phase transition in the study of the ferroelectriclike metals and promotes them to be applied in ferroelectriclike electronic devices

    Simultaneous Structural Identification of Natural Products in Fractions of Crude Extract of the Rare Endangered Plant Anoectochilus roxburghii Using 1H NMR/RRLC-MS Parallel Dynamic Spectroscopy

    Get PDF
    Nuclear magnetic resonance/liquid chromatography-mass spectroscopy parallel dynamic spectroscopy (NMR/LC-MS PDS) is a method aimed at the simultaneous structural identification of natural products in complex mixtures. In this study, the method is illustrated with respect to 1H NMR and rapid resolution liquid chromatography-mass spectroscopy (RRLC-MS) data, acquired from the crude extract of Anoectochilus roxburghii, which was separated into a series of fractions with the concentration of constituent dynamic variation using reversed-phase preparative chromatography. Through fraction ranges and intensity changing profiles in 1H NMR/RRLC–MS PDS spectrum, 1H NMR and the extracted ion chromatogram (XIC) signals deriving from the same individual constituent, were correlated due to the signal amplitude co-variation resulting from the concentration variation of constituents in a series of incompletely separated fractions. 1H NMR/RRLC-MS PDS was then successfully used to identify three types of natural products, including eight flavonoids, four organic acids and p-hydroxybenzaldehyde, five of which have not previously been reported in Anoectochilus roxburghii. In addition, two groups of co-eluted compounds were successfully identified. The results prove that this approach should be of benefit in the unequivocal structural determination of a variety of classes of compounds from extremely complex mixtures, such as herbs and biological samples, which will lead to improved efficiency in the identification of new potential lead compounds
    • …
    corecore