26 research outputs found
An Alarm System For Segmentation Algorithm Based On Shape Model
It is usually hard for a learning system to predict correctly on rare events
that never occur in the training data, and there is no exception for
segmentation algorithms. Meanwhile, manual inspection of each case to locate
the failures becomes infeasible due to the trend of large data scale and
limited human resource. Therefore, we build an alarm system that will set off
alerts when the segmentation result is possibly unsatisfactory, assuming no
corresponding ground truth mask is provided. One plausible solution is to
project the segmentation results into a low dimensional feature space; then
learn classifiers/regressors to predict their qualities. Motivated by this, in
this paper, we learn a feature space using the shape information which is a
strong prior shared among different datasets and robust to the appearance
variation of input data.The shape feature is captured using a Variational
Auto-Encoder (VAE) network that trained with only the ground truth masks.
During testing, the segmentation results with bad shapes shall not fit the
shape prior well, resulting in large loss values. Thus, the VAE is able to
evaluate the quality of segmentation result on unseen data, without using
ground truth. Finally, we learn a regressor in the one-dimensional feature
space to predict the qualities of segmentation results. Our alarm system is
evaluated on several recent state-of-art segmentation algorithms for 3D medical
segmentation tasks. Compared with other standard quality assessment methods,
our system consistently provides more reliable prediction on the qualities of
segmentation results.Comment: Accepted to ICCV 2019 (10 pages, 4 figures
Towards Robust Deep Learning for Medical Image Analysis
Multi-dimensional medical data are rapidly collected to enhance healthcare. With the recent advance in artificial intelligence, deep learning techniques have been widely applied to medical images, constituting a significant proportion of medical data. The techniques of automated medical image analysis have the potential to benefit general clinical procedures, e.g., disease screening, malignancy diagnosis, patient risk prediction, and surgical planning. Although preliminary success takes place, the robustness of these approaches requires to be cautiously validated and sufficiently guaranteed before their application to real-world clinical problems.
In this thesis, we propose different approaches to improve the robustness of deep learning algorithms for automated medical image analysis. (i) In terms of network architecture, we leverage the advantages of both 2D and 3D networks, and propose an alternative 2.5D approach for 3D organ segmentation. (ii) To improve data efficiency and utilize large-scale unlabeled medical data, we propose a unified framework for semi-supervised medical image segmentation and domain adaptation. (iii) For the safety-critical applications, we design a unified approach for failure detection and anomaly segmentation. (iv) We study the problem of Federated Learning, which enables collaborative learning and preserves data privacy, and improve the robustness of the algorithm in the non-i.i.d setting. (v) We incorporate multi-phase information for more accurate pancreatic tumor detection. (vi) Finally, we show our discovery for potential pancreatic cancer screening on non-contrast CT scans which outperform expert radiologists
A 3D Coarse-to-Fine Framework for Volumetric Medical Image Segmentation
In this paper, we adopt 3D Convolutional Neural Networks to segment
volumetric medical images. Although deep neural networks have been proven to be
very effective on many 2D vision tasks, it is still challenging to apply them
to 3D tasks due to the limited amount of annotated 3D data and limited
computational resources. We propose a novel 3D-based coarse-to-fine framework
to effectively and efficiently tackle these challenges. The proposed 3D-based
framework outperforms the 2D counterpart to a large margin since it can
leverage the rich spatial infor- mation along all three axes. We conduct
experiments on two datasets which include healthy and pathological pancreases
respectively, and achieve the current state-of-the-art in terms of
Dice-S{\o}rensen Coefficient (DSC). On the NIH pancreas segmentation dataset,
we outperform the previous best by an average of over 2%, and the worst case is
improved by 7% to reach almost 70%, which indicates the reliability of our
framework in clinical applications.Comment: 9 pages, 4 figures, Accepted to 3D
End-to-End Adversarial Shape Learning for Abdomen Organ Deep Segmentation
Automatic segmentation of abdomen organs using medical imaging has many
potential applications in clinical workflows. Recently, the state-of-the-art
performance for organ segmentation has been achieved by deep learning models,
i.e., convolutional neural network (CNN). However, it is challenging to train
the conventional CNN-based segmentation models that aware of the shape and
topology of organs. In this work, we tackle this problem by introducing a novel
end-to-end shape learning architecture -- organ point-network. It takes deep
learning features as inputs and generates organ shape representations as points
that located on organ surface. We later present a novel adversarial shape
learning objective function to optimize the point-network to capture shape
information better. We train the point-network together with a CNN-based
segmentation model in a multi-task fashion so that the shared network
parameters can benefit from both shape learning and segmentation tasks. We
demonstrate our method with three challenging abdomen organs including liver,
spleen, and pancreas. The point-network generates surface points with
fine-grained details and it is found critical for improving organ segmentation.
Consequently, the deep segmentation model is improved by the introduced shape
learning as significantly better Dice scores are observed for spleen and
pancreas segmentation.Comment: Accepted to International Workshop on Machine Learning in Medical
Imaging (MLMI2019