26 research outputs found

    An Alarm System For Segmentation Algorithm Based On Shape Model

    Full text link
    It is usually hard for a learning system to predict correctly on rare events that never occur in the training data, and there is no exception for segmentation algorithms. Meanwhile, manual inspection of each case to locate the failures becomes infeasible due to the trend of large data scale and limited human resource. Therefore, we build an alarm system that will set off alerts when the segmentation result is possibly unsatisfactory, assuming no corresponding ground truth mask is provided. One plausible solution is to project the segmentation results into a low dimensional feature space; then learn classifiers/regressors to predict their qualities. Motivated by this, in this paper, we learn a feature space using the shape information which is a strong prior shared among different datasets and robust to the appearance variation of input data.The shape feature is captured using a Variational Auto-Encoder (VAE) network that trained with only the ground truth masks. During testing, the segmentation results with bad shapes shall not fit the shape prior well, resulting in large loss values. Thus, the VAE is able to evaluate the quality of segmentation result on unseen data, without using ground truth. Finally, we learn a regressor in the one-dimensional feature space to predict the qualities of segmentation results. Our alarm system is evaluated on several recent state-of-art segmentation algorithms for 3D medical segmentation tasks. Compared with other standard quality assessment methods, our system consistently provides more reliable prediction on the qualities of segmentation results.Comment: Accepted to ICCV 2019 (10 pages, 4 figures

    Towards Robust Deep Learning for Medical Image Analysis

    Get PDF
    Multi-dimensional medical data are rapidly collected to enhance healthcare. With the recent advance in artificial intelligence, deep learning techniques have been widely applied to medical images, constituting a significant proportion of medical data. The techniques of automated medical image analysis have the potential to benefit general clinical procedures, e.g., disease screening, malignancy diagnosis, patient risk prediction, and surgical planning. Although preliminary success takes place, the robustness of these approaches requires to be cautiously validated and sufficiently guaranteed before their application to real-world clinical problems. In this thesis, we propose different approaches to improve the robustness of deep learning algorithms for automated medical image analysis. (i) In terms of network architecture, we leverage the advantages of both 2D and 3D networks, and propose an alternative 2.5D approach for 3D organ segmentation. (ii) To improve data efficiency and utilize large-scale unlabeled medical data, we propose a unified framework for semi-supervised medical image segmentation and domain adaptation. (iii) For the safety-critical applications, we design a unified approach for failure detection and anomaly segmentation. (iv) We study the problem of Federated Learning, which enables collaborative learning and preserves data privacy, and improve the robustness of the algorithm in the non-i.i.d setting. (v) We incorporate multi-phase information for more accurate pancreatic tumor detection. (vi) Finally, we show our discovery for potential pancreatic cancer screening on non-contrast CT scans which outperform expert radiologists

    A 3D Coarse-to-Fine Framework for Volumetric Medical Image Segmentation

    Full text link
    In this paper, we adopt 3D Convolutional Neural Networks to segment volumetric medical images. Although deep neural networks have been proven to be very effective on many 2D vision tasks, it is still challenging to apply them to 3D tasks due to the limited amount of annotated 3D data and limited computational resources. We propose a novel 3D-based coarse-to-fine framework to effectively and efficiently tackle these challenges. The proposed 3D-based framework outperforms the 2D counterpart to a large margin since it can leverage the rich spatial infor- mation along all three axes. We conduct experiments on two datasets which include healthy and pathological pancreases respectively, and achieve the current state-of-the-art in terms of Dice-S{\o}rensen Coefficient (DSC). On the NIH pancreas segmentation dataset, we outperform the previous best by an average of over 2%, and the worst case is improved by 7% to reach almost 70%, which indicates the reliability of our framework in clinical applications.Comment: 9 pages, 4 figures, Accepted to 3D

    End-to-End Adversarial Shape Learning for Abdomen Organ Deep Segmentation

    Full text link
    Automatic segmentation of abdomen organs using medical imaging has many potential applications in clinical workflows. Recently, the state-of-the-art performance for organ segmentation has been achieved by deep learning models, i.e., convolutional neural network (CNN). However, it is challenging to train the conventional CNN-based segmentation models that aware of the shape and topology of organs. In this work, we tackle this problem by introducing a novel end-to-end shape learning architecture -- organ point-network. It takes deep learning features as inputs and generates organ shape representations as points that located on organ surface. We later present a novel adversarial shape learning objective function to optimize the point-network to capture shape information better. We train the point-network together with a CNN-based segmentation model in a multi-task fashion so that the shared network parameters can benefit from both shape learning and segmentation tasks. We demonstrate our method with three challenging abdomen organs including liver, spleen, and pancreas. The point-network generates surface points with fine-grained details and it is found critical for improving organ segmentation. Consequently, the deep segmentation model is improved by the introduced shape learning as significantly better Dice scores are observed for spleen and pancreas segmentation.Comment: Accepted to International Workshop on Machine Learning in Medical Imaging (MLMI2019
    corecore