79 research outputs found
Experimental Study of Foam Flooding in Low Permeability Sandstones: Effects of Rock Permeability and Microscopic Heterogeneity
Foam flooding (or injection of foam) is a common technology to enhance oil recovery. Although the effects of permeability on foam flooding were well studied in many laboratory experiments, little research has been focused on the specificity of low permeability. In this paper, a series of constant-quality nitrogen foam flow experiments were conducted to investigate the effects of permeability on the foam performance and oil displacement efficiency. Moreover, the results indicated that foam can be generated in low permeability porous media. With uniform experimental conditions, the higher permeability core has a bigger recovery amplification and greater decreasing range of water cut decline. Furthermore, the effect of microscopic heterogeneities of low permeability reservoir on foam displacement is considered. Moreover, experimental comparative analysis with different microscopic heterogeneity cores showed that, in low permeability condition, homogeneous porous media has a better prospects of oil-displacement. Finally, in this work, the results of the permeability effects on the foam performance and oil displacement efficiency exemplify a potential to apply the technology to low permeability reservoir
Phosphatidylserine Regulates Plasma Membrane Repair through Tetraspanin-Enriched Macrodomains
The integrity of the plasma membrane is critical to cell function and survival. Cells have developed multiple mechanisms to repair damaged plasma membranes. A key process during plasma membrane repair is to limit the size of the damage, which is facilitated by the presence of tetraspanin-enriched rings surrounding damage sites. Here, we identify phosphatidylserine-enriched rings surrounding damaged sites of the plasma membrane, resembling tetraspanin-enriched rings. Importantly, the formation of both the phosphatidylserine- and tetraspanin-enriched rings requires phosphatidylserine and its transfer proteins ORP5 and ORP9. Interestingly, ORP9, but not ORP5, is recruited to the damage sites, suggesting cells acquire phosphatidylserine from multiple sources upon plasma membrane damage. We further demonstrate that ORP9 contributes to efficient plasma membrane repair. Our results thus unveil a role for phosphatidylserine and its transfer proteins in facilitating the formation of tetraspanin-enriched macrodomains and plasma membrane repair
Unusual conservation of mitochondrial gene order in Crassostrea oysters: evidence for recent speciation in Asia
<p>Abstract</p> <p>Background</p> <p>Oysters are morphologically plastic and hence difficult subjects for taxonomic and evolutionary studies. It is long been suspected, based on the extraordinary species diversity observed, that Asia Pacific is the epicenter of oyster speciation. To understand the species diversity and its evolutionary history, we collected five <it>Crassostrea </it>species from Asia and sequenced their complete mitochondrial (mt) genomes in addition to two newly released Asian oysters (<it>C. iredalei </it>and <it>Saccostrea mordax</it>) for a comprehensive analysis.</p> <p>Results</p> <p>The six Asian <it>Crassostrea </it>mt genomes ranged from 18,226 to 22,446 bp in size, and all coded for 39 genes (12 proteins, 2 rRNAs and 25 tRNAs) on the same strand. Their genomes contained a split of the <it>rrnL </it>gene and duplication of <it>trnM</it>, <it>trnK </it>and <it>trnQ </it>genes. They shared the same gene order that differed from an Atlantic sister species by as many as nine tRNA changes (6 transpositions and 3 duplications) and even differed significantly from <it>S. mordax </it>in protein-coding genes. Phylogenetic analysis indicates that the six Asian <it>Crassostrea </it>species emerged between 3 and 43 Myr ago, while the Atlantic species evolved 83 Myr ago.</p> <p>Conclusions</p> <p>The complete conservation of gene order in the six Asian <it>Crassostrea </it>species over 43 Myr is highly unusual given the remarkable rate of rearrangements in their sister species and other bivalves. It provides strong evidence for the recent speciation of the six <it>Crassostrea </it>species in Asia. It further indicates that changes in mt gene order may not be strictly a function of time but subject to other constraints that are presently not well understood.</p
Recommended from our members
Downgrading Recent Estimates of Land Available for Biofuel Production
Recent estimates of additional land available for bioenergy production range from 320 to 1411 million ha. These estimates were generated from four scenarios regarding the types of land suitable for bioenergy production using coarse-resolution inputs of soil productivity, slope, climate, and land cover. In this paper, these maps of land availability were assessed using high-resolution satellite imagery. Samples from these maps were selected and crowdsourcing of Google Earth images was used to determine the type of land cover and the degree of human impact. Based on this sample, a set of rules was formulated to downward adjust the original estimates for each of the four scenarios that were previously used to generate the maps of land availability for bioenergy production. The adjusted land availability estimates range from 56 to 1035 million ha depending upon the scenario and the ruleset used when the sample is corrected for bias. Large forest areas not intended for biofuel production purposes were present in all scenarios. However, these numbers should not be considered as definitive estimates but should be used to highlight the uncertainty in attempting to quantify land availability for biofuel production when using coarse-resolution inputs with implications for further policy development
A trehalose biosynthetic enzyme doubles as an osmotic stress sensor to regulate bacterial morphogenesis
The dissacharide trehalose is an important intracellular osmoprotectant and the OtsA/B pathway is the principal pathway for trehalose biosynthesis in a wide range of bacterial species. Scaffolding proteins and other cytoskeletal elements play an essential role in morphogenetic processes in bacteria. Here we describe how OtsA, in addition to its role in trehalose biosynthesis, functions as an osmotic stress sensor to regulate cell morphology in Arthrobacter strain A3. In response to osmotic stress, this and other Arthrobacter species undergo a transition from bacillary to myceloid growth. An otsA null mutant exhibits constitutive myceloid growth. Osmotic stress leads to a depletion of trehalose-6-phosphate, the product of the OtsA enzyme, and experimental depletion of this metabolite also leads to constitutive myceloid growth independent of OtsA function. In vitro analyses indicate that OtsA can self-assemble into protein networks, promoted by trehalose-6-phosphate, a property that is not shared by the equivalent enzyme from E. coli, despite the latter's enzymatic activity when expressed in Arthrobacter. This, and the localization of the protein in non-stressed cells at the mid-cell and poles, indicates that OtsA from Arthrobacter likely functions as a cytoskeletal element regulating cell morphology. Recruiting a biosynthetic enzyme for this morphogenetic function represents an intriguing adaptation in bacteria that can survive in extreme environments
The oyster genome reveals stress adaptation and complexity of shell formation
The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa. © 2012 Macmillan Publishers Limited. All rights reserved
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
- …