184 research outputs found

    Complications of breast core biopsy

    Get PDF

    Influence of beetroot juice supplementation on intermittent exercise performance.

    Get PDF
    This is the final version of the article. Available from Springer on open access via the DOI in this record.PURPOSE: This study tested the hypothesis that nitrate (NO3 (-)) supplementation would improve performance during high-intensity intermittent exercise featuring different work and recovery intervals. METHOD: Ten male team-sport players completed high-intensity intermittent cycling tests during separate 5-day supplementation periods with NO3 (-)-rich beetroot juice (BR; 8.2 mmol NO3 (-) day(-1)) and NO3 (-)-depleted beetroot juice (PL; 0.08 mmol NO3 (-) day(-1)). Subjects completed: twenty-four 6-s all-out sprints interspersed with 24 s of recovery (24 × 6-s); seven 30-s all-out sprints interspersed with 240 s of recovery (7 × 30-s); and six 60-s self-paced maximal efforts interspersed with 60 s of recovery (6 × 60-s); on days 3, 4, and 5 of supplementation, respectively. RESULT: Plasma [NO2 (-)] was 237 % greater in the BR trials. Mean power output was significantly greater with BR relative to PL in the 24 × 6-s protocol (568 ± 136 vs. 539 ± 136 W; P  0.05). The increase in blood [lactate] across the 24 × 6-s and 7 × 30-s protocols was greater with BR (P  0.05). CONCLUSION: BR might be ergogenic during repeated bouts of short-duration maximal-intensity exercise interspersed with short recovery periods, but not necessarily during longer duration intervals or when a longer recovery duration is applied. These findings suggest that BR might have implications for performance enhancement during some types of intermittent exercise

    Dietary nitrate supplementation attenuates the reduction in exercise tolerance following blood donation

    Get PDF
    PublishedJournal ArticleThis is the author accepted manuscript. The final version is available from American Physiological Society via the DOI in this record.We tested the hypothesis that dietary nitrate (NO3-)-rich beetroot juice (BR) supplementation could partially offset deteriorations in O2 transport and utilization and exercise tolerance after blood donation. Twenty-two healthy volunteers performed moderate-intensity and ramp incremental cycle exercise tests prior to and following withdrawal of ~450 ml of whole blood. Before donation, all subjects consumed seven 70-ml shots of NO3--depleted BR [placebo (PL)] in the 48 h preceding the exercise tests. During the 48 h after blood donation, subjects consumed seven shots of BR (each containing 6.2 mmol of NO3-, n = 11) or PL (n. = 11) before repeating the exercise tests. Hemoglobin concentration and hematocrit were reduced by ~8-9% following blood donation (P < 0.05), with no difference between the BR and PL groups. Steady-state 02 uptake during moderate-intensity exercise was ~4% lower after than before donation in the BR group (P < 0.05) but was unchanged in the PL group. The ramp test peak power decreased from predonation (341 ± 70 and 331 ± 68 W in PL and BR, respectively) to postdonation (324 ± 69 and 322 ± 66 W in PL and BR, respectively) in both groups (P < 0.05). However, the decrement in performance was significantly less in the BR than PL group (2.7% vs. 5.0%, P < 0.05). NO3 supplementation reduced the 02 cost of moderate-inten-sity exercise and attenuated the decline in ramp incremental exercise performance following blood donation. These results have implications for improving functional capacity following blood loss.We thank James White Drinks (Ipswich, UK) for donating the juices used in the study. We also thank Matthew Black, James Kelly, and Daryl Wilkerson for assistance with data processing

    Two weeks of watermelon juice supplementation improves nitric oxide bioavailability but not endurance exercise performance in humans

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.This study tested the hypothesis that watermelon juice supplementation would improve nitric oxide bioavailability and exercise performance. Eight healthy recreationally-active adult males reported to the laboratory on two occasions for initial testing without dietary supplementation (control condition). Thereafter, participants were randomly assigned, in a cross-over experimental design, to receive 16 days of supplementation with 300 mL·day(-1) of a watermelon juice concentrate, which provided ∼3.4 g l-citrulline·day(-1) and an apple juice concentrate as a placebo. Participants reported to the laboratory on days 14 and 16 of supplementation to assess the effects of the interventions on blood pressure, plasma [l-citrulline], plasma [l-arginine], plasma [nitrite], muscle oxygenation and time-to-exhaustion during severe-intensity exercise. Compared to control and placebo, plasma [l-citrulline] (29 ± 4, 22 ± 6 and 101 ± 23 μM), [l-arginine] (74 ± 9, 67 ± 13 and 116 ± 9 μM) and [nitrite] (102 ± 29, 106 ± 21 and 201 ± 106 nM) were higher after watermelon juice supplementation (P < 0.01). However, systolic blood pressure was higher in the watermelon juice (130 ± 11) and placebo (131 ± 9) conditions compared to the control condition (124 ± 8 mmHg; P < 0.05). The skeletal muscle oxygenation index during moderate-intensity exercise was greater in the watermelon juice condition than the placebo and control conditions (P < 0.05), but time-to-exhaustion during the severe-intensity exercise test (control: 478 ± 80, placebo: 539 ± 108, watermelon juice: 550 ± 143 s) was not significantly different between conditions (P < 0.05). In conclusion, while watermelon juice supplementation increased baseline plasma [nitrite] and improved muscle oxygenation during moderate-intensity exercise, it increased resting blood pressure and did not improve time-to-exhaustion during severe-intensity exercise. These findings do not support the use of watermelon juice supplementation as a nutritional intervention to lower blood pressure or improve endurance exercise performance in healthy adults

    Dietary nitrate supplementation: effects on plasma nitrite and pulmonary O2 uptake dynamics during exercise in hypoxia and normoxia

    Get PDF
    Clinical TrialThis is the author accepted manuscript. The final version is available from the American Physiological Society via the DOI in this record.We investigated the effects of dietary nitrate (NO3 (-)) supplementation on the concentration of plasma nitrite ([NO2 (-)]), oxygen uptake (V̇o2) kinetics, and exercise tolerance in normoxia (N) and hypoxia (H). In a double-blind, crossover study, 12 healthy subjects completed cycle exercise tests, twice in N (20.9% O2) and twice in H (13.1% O2). Subjects ingested either 140 ml/day of NO3 (-)-rich beetroot juice (8.4 mmol NO3; BR) or NO3 (-)-depleted beetroot juice (PL) for 3 days prior to moderate-intensity and severe-intensity exercise tests in H and N. Preexercise plasma [NO2 (-)] was significantly elevated in H-BR and N-BR compared with H-PL (P < 0.01) and N-PL (P < 0.01). The rate of decline in plasma [NO2 (-)] was greater during severe-intensity exercise in H-BR [-30 ± 22 nM/min, 95% confidence interval (CI); -44, -16] compared with H-PL (-7 ± 10 nM/min, 95% CI; -13, -1; P < 0.01) and in N-BR (-26 ± 19 nM/min, 95% CI; -38, -14) compared with N-PL (-1 ± 6 nM/min, 95% CI; -5, 2; P < 0.01). During moderate-intensity exercise, steady-state pulmonary V̇o2 was lower in H-BR (1.91 ± 0.28 l/min, 95% CI; 1.77, 2.13) compared with H-PL (2.05 ± 0.25 l/min, 95% CI; 1.93, 2.26; P = 0.02), and V̇o2 kinetics was faster in H-BR (τ: 24 ± 13 s, 95% CI; 15, 32) compared with H-PL (31 ± 11 s, 95% CI; 23, 38; P = 0.04). NO3 (-) supplementation had no significant effect on V̇o2 kinetics during severe-intensity exercise in hypoxia, or during moderate-intensity or severe-intensity exercise in normoxia. Tolerance to severe-intensity exercise was improved by NO3 (-) in hypoxia (H-PL: 197 ± 28; 95% CI; 173, 220 vs. H-BR: 214 ± 43 s, 95% CI; 177, 249; P = 0.04) but not normoxia. The metabolism of NO2 (-) during exercise is altered by NO3 (-) supplementation, exercise, and to a lesser extent, hypoxia. In hypoxia, NO3 (-) supplementation enhances V̇o2 kinetics during moderate-intensity exercise and improves severe-intensity exercise tolerance. These findings may have important implications for individuals exercising at altitude

    Dose-dependent effects of dietary nitrate on the oxygen cost of moderate-intensity exercise: Acute vs. chronic supplementation

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordPURPOSE: To investigate whether chronic supplementation with a low or moderate dose of dietary nitrate (NO3(-)) reduces submaximal exercise oxygen uptake (V˙O2) and to assess whether or not this is dependent on acute NO3(-) administration prior to exercise. METHODS: Following baseline tests, 34 healthy subjects were allocated to receive 3 mmol NO3(-), 6 mmol NO3(-) or placebo. Two hours following the first ingestion, and after 7, 28 and 30 days of supplementation, subjects completed two moderate-intensity step exercise tests. On days 28 and 30, subjects in the NO3(-) groups completed the test 2 h post consumption of a NO3(-) dose (CHR + ACU) and a placebo dose (CHR). RESULTS: Plasma nitrite concentration ([NO2(-)]) was elevated in a dose-dependent manner at 2 h, 7 days and 28-30 days on the CHR + ACU visit. Compared to pre-treatment baseline, 6 mmol NO3(-) reduced the steady-state V˙O2 during moderate-intensity exercise by 3% at 2 h (P = 0.06), 7 days and at 28-30 days (both P < 0.05) on the CHR + ACU visit, but was unaffected by 3 mmol NO3(-) at all measurement points. On the CHR visit in the 6 mmol group, plasma [NO2(-)] had returned to pre-treatment baseline, but the steady-state V˙O2 remained reduced. CONCLUSION: Up to ∼4 weeks supplementation with 6 but not 3 mmol NO3(-) can reduce submaximal exercise V˙O2. A comparable reduction in submaximal exercise V˙O2 following chronic supplementation with 6 mmol NO3(-) can be achieved both with and without the acute ingestion of NO3(-) and associated elevation of plasma [NO2(-)].Financial support for this study was provided by the Gatorade Sports Science Institute, a division of PepsiCo, Inc. The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of PepsiCo, Inc

    Human skeletal muscle nitrate store: influence of dietary nitrate supplementation and exercise

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordRodent skeletal muscle contains a large store of nitrate that can be augmented by the consumption of dietary nitrate. This muscle nitrate reservoir has been found to be an important source of nitrite and nitric oxide (NO), via its reduction by tissue xanthine oxidoreductases (XOR). To explore if this pathway is also active in human skeletal muscle during exercise, and if it is sensitive to local nitrate availability, we assessed exercise-induced changes in muscle nitrate and nitrite concentrations in young healthy humans, under baseline conditions and following dietary nitrate consumption. We found that baseline nitrate and nitrite concentrations were far higher in muscle than in plasma (∼4-fold and ∼29-fold, respectively), and that the consumption of a single bolus of dietary nitrate (12.8 mmol) significantly elevated nitrate concentration in both plasma (∼19 fold) and muscle (∼5 fold). Consistent with these observations, and with previous suggestions of active muscle nitrate transport, we present Western blot data to show significant expression of the active nitrate/nitrite transporter, sialin, in human skeletal muscle. Furthermore, we report an exercise-induced reduction in human muscle nitrate concentration (by ∼39%), but only in the presence of an increased muscle nitrate store. Our results indicate that human skeletal muscle nitrate stores are sensitive to dietary nitrate intake and may contribute to NO generation during exercise. Together, these findings suggest that skeletal muscle plays an important role in the transport, storage and metabolism of nitrate in humans. This article is protected by copyright. All rights reserved

    Discrete physiological effects of beetroot juice and potassium nitrate supplementation following 4-wk sprint interval training

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Physiological Society via the DOI in this record.The physiological and exercise performance adaptations to sprint interval training (SIT) may be modified by dietary nitrate (NO3) supplementation. However, it is possible that different types of NO3 supplementation evoke divergent physiological and performance adaptations to SIT. The purpose of this study was to compare the effects of 4-wk SIT with and without concurrent dietary NO3 supplementation administered as either NO3-rich beetroot juice (BR) or potassium NO3 (KNO3). Thirty recreationally active subjects completed a battery of exercise tests before and after a 4-wk intervention in which they were allocated to one of three groups: 1) SIT undertaken without dietary NO3 supplementation (SIT); 2) SIT accompanied by concurrent BR supplementation (SIT BR); or 3) SIT accompanied by concurrent KNO3 supplementation (SIT KNO3). During severe-intensity exercise, V O2peak and time to task failure were improved to a greater extent with SIT +BR than SIT and SIT KNO3 (P 0.05). There was also a greater reduction in the accumulation of muscle lactate at 3 min of severe-intensity exercise in SIT BR compared with SIT KNO3 (P <0.05). Plasma NO2 concentration fell to a greater extent during severe-intensity exercise in SIT BR compared with SIT and SIT KNO3 (P <0.05). There were no differences between groups in the reduction in the muscle phosphocreatine recovery time constant from pre- to postintervention (P <0.05). These findings indicate that 4-wk SIT with concurrent BR supplementation results in greater exercise capacity adaptations compared with SIT alone and SIT with concurrent KNO3 supplementation. This may be the result of greater NO-mediated signaling in SIT +BR compared with SIT+ KNO3. NEW & NOTEWORTHY We compared the influence of different forms of dietary nitrate supplementation on the physiological and performance adaptations to sprint interval training (SIT). Compared with SIT alone, supplementation with nitrate-rich beetroot juice, but not potassium NO3, enhanced some physiological adaptations to training

    Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Physiological Society via the DOI in this record.We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1) SIT and NO3--depleted beetroot juice as a placebo (SIT+PL); 2) SIT and NO3--rich beetroot juice (∼13 mmol NO3-/day; SIT+BR); or 3) no training and NO3--rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR (P 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only (P < 0.05). These findings suggest that BR supplementation may enhance some aspects of the physiological adaptations to SIT. NEW & NOTEWORTHY We investigated the influence of nitraterich and nitrate-depleted beetroot juice on the muscle metabolic and physiological adaptations to 4 wk of sprint interval training. Compared with placebo, dietary nitrate supplementation reduced the O2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval training.PepsiC
    • …
    corecore