705 research outputs found

    Tetrahedratic mesophases, chiral order, and helical domains induced by quadrupolar and octupolar interactions

    Get PDF
    We present an exhaustive account of phases and phase transitions that can be stabilized in the recently introduced generalized Lebwohl-Lasher model with quadrupolar and octupolar microscopic interactions [ L. Longa, G. PajÄ…k and T. Wydro Phys. Rev. E 79 040701 (2009)]. A complete mean-field analysis of the model, along with Monte Carlo simulations allows us to identify four distinct classes of the phase diagrams with a number of multicritical points where, in addition to the standard uniaxial and biaxial nematic phases, the other nematic like phases are stabilized. These involve, among the others, tetrahedratic (T), nematic tetrahedratic (NT), and chiral nematic tetrahedratic (NT*) phases of global Td, D2d, and D2 symmetry, respectively. Molecular order parameters and correlation functions in these phases are determined. We conclude with generalizations of the model that give a simple molecular interpretation of macroscopic regions with opposite optical activity (ambidextrous chirality), observed, e.g., in bent-core systems. An estimate of the helical pitch in the NT* phase is also given

    Structure Constant of the Yang-Lee Edge Singularity

    Full text link
    This paper studies the Yang-Lee singularity of the 2-dimensional Ising model on the cylinder via transfer matrix and finite-size scaling techniques. These techniques enable a measurement of the 2-point and 3-point correlations and a comparison of a measurement of a corresponding universal amplitude with a prediction for the amplitude from the (A4,A1) minimal conformal field theory.Comment: 1 figur

    Excitation Spectrum at the Yang-Lee Edge Singularity of 2D Ising Model on the Strip

    Full text link
    At the Yang-Lee edge singularity, finite-size scaling behavior is used to measure the low-lying excitation spectrum of the Ising quantum spin chain for free boundary conditions. The measured spectrum is used to identify the CFT that describes the Yang-Lee edge singularity of the 2D Ising model for free boundary conditions.Comment: 7 pages, 1 figur

    Stability of Biaxial Nematic Phase for Systems with Variable Molecular Shape Anisotropy

    Full text link
    We study the influence of fluctuations in molecular shape on the stability of the biaxial nematic phase by generalizing the mean field model of Mulder and Ruijgrok [Physica A {\bf 113}, 145 (1982)]. We limit ourselves to the case when the molecular shape anisotropy, represented by the alignment tensor, is a random variable of an annealed type. A prototype of such behavior can be found in lyotropic systems - a mixture of potassium laurate, 1-decanol, and D2OD_2O, where distribution of the micellar shape adjusts to actual equilibrium conditions. Further examples of materials with the biaxial nematic phase, where molecular shape is subject to fluctuations, are thermotropic materials composed of flexible trimeric- or tetrapod-like molecular units. Our calculations show that the Gaussian equilibrium distribution of the variables describing molecular shape (dispersion force) anisotropy gives rise to new classes of the phase diagrams, absent in the original model. Depending on properties of the shape fluctuations, the stability of the biaxial nematic phase can be either enhanced or depressed, relative to the uniaxial nematic phases. In the former case the splitting of the Landau point into two triple points with a direct phase transition line from isotropic to biaxial phase is observed.Comment: 18 pages containing 6 figure

    Critical Excitation Spectrum of Quantum Chain With A Local 3-Spin Coupling

    Full text link
    This article reports a measurement of the low-energy excitation spectrum along the critical line for a quantum spin chain having a local interaction between three Ising spins and longitudinal and transverse magnetic fields. The measured excitation spectrum agrees with that predicted by the (D4_4, A4_4) conformal minimal model under a nontrivial correspondence between translations at the critical line and discrete lattice translations. Under this correspondence, the measurements confirm a prediction that the critical line of this quantum spin chain and the critical point of the 2D 3-state Potts model are in the same universality class.Comment: 7 pages, 2 figure
    • …
    corecore