37 research outputs found

    Analysis of a soft bio-Inspired active actuation model for the design of artificial vocal folds

    Get PDF
    Phonation results from the passively induced oscillation of the vocal folds in the larynx, creating sound waves that are then articulated by the mouth and nose. Patients undergoing laryngectomy have their vocal folds removed and thus must rely on alternative sources of achieving the desired vibration of artificial vocal folds. Existing solutions, such as voice prostheses and the Electrolarynx, are limited by producing sufficient voice quality, for instance. In this paper, we present a mathematical analysis of a physical model of an active vocal fold prosthesis. The inverse dynamical equation of the system will help to understand whether specific types of soft actuators can produce the required force to generate natural phonations. Hence, this is referred to as the active actuation model. We present the analysis to replicate the vowels /a/, /e/, /i/, and /u/ and voice qualities of vocal fry, modal, falsetto, breathy, pressed, and whispery. These characteristics would be required as a first step to design an artificial vocal folds system. Inverse dynamics is used to identify the required forces to change the glottis area and frequencies to achieve sufficient oscillation of artificial vocal folds. Two types of ionic polymer-metal composite (IPMC) actuators are used to assess their ability to produce these forces and the corresponding activation voltages required. The results of our proposed analysis will enable research into the effects of natural phonation and, further, provide the foundational work for the creation of advanced larynx prostheses

    Meshless Simulation of Multi-site Radio Frequency Catheter Ablation through the Fragile Points Method

    Get PDF
    Computational models for radio frequency catheter ablation (RFCA) of cardiac arrhythmia have been developed and tested in conditions where a single ablation site is considered. However, in reality arrhythmic events are generated at multiple sites which are ablated during treatment. Under such conditions, heat accumulation from several ablations is expected and models should take this effect into account. Moreover, such models are solved using the Finite Element Method which requires a good quality mesh to ensure numerical accuracy. Therefore, clinical application is limited since heat accumulation effects are neglected and numerical accuracy depends on mesh quality. In this work, we propose a novel meshless computational model where tissue heat accumulation from previously ablated sites is taken into account. In this way, we aim to overcome the mesh quality restriction of the Finite Element Method and enable realistic multi-site ablation simulation. We consider a two ablation sites protocol where tissue temperature at the end of the first ablation is used as initial condition for the second ablation. The effect of the time interval between the ablation of the two sites is evaluated. The proposed method demonstrates that previous models that do not account for heat accumulation between ablations may underestimate the tissue heat distribution

    A Multi-cavity Touch Interface for a Flexible Soft Laparoscopy Device: Design and Evaluation

    Get PDF
    Medical instruments made of compliant materials provide increased safety and dexterity when interacting with anatomical environments. Beyond the development of hardware, the maneuverability of these medical instruments presents significant challenges, especially in practical applications like minimally invasive surgery. Consequently, developing efficient and intuitive interfaces for operating these soft instruments is crucial. This study focuses on creating a flexible, soft robotic handheld laparoscopy device featuring a multi-cavity touch interface. The pneumatically driven soft robotic device has a continuum structure and an outermost diameter of 11.5 mm. The laparoscopy device is equipped with a silicone-cast touch interface that includes five air-filled cavities. Monitoring the pressure within these cavities facilitates the identification of user inputs, offering an intuitive and cost-effective way to operate the device. To evaluate the laparoscopy device’s performance, in vitro tests were conducted using a test rig and a phantom environment. The device’s usability was assessed by participants, providing valuable insights into its functionality and practicality in a controlled setting. These evaluations lay the groundwork for future advancements in soft robotic medical instruments for minimally invasive procedures

    Soft Robot-Assisted Minimally Invasive Surgery and Interventions: Advances and Outlook

    Get PDF
    Since the emergence of soft robotics around two decades ago, research interest in the field has escalated at a pace. It is fuelled by the industry's appreciation of the wide range of soft materials available that can be used to create highly dexterous robots with adaptability characteristics far beyond that which can be achieved with rigid component devices. The ability, inherent in soft robots, to compliantly adapt to the environment, has significantly sparked interest from the surgical robotics community. This article provides an in-depth overview of recent progress and outlines the remaining challenges in the development of soft robotics for minimally invasive surgery

    Design and characterisation of multi-cavity, fluidic haptic feedback system for mechano-tactile feedback

    Get PDF
    Numerous studies have indicated that the use of a closed-loop haptic feedback system, which offers various mechano-tactile stimuli patterns with different actuation methods, can improve the performance and grasp control of prosthetic hands. Purely mechanical-driven feedback approaches for various mechano-tactile stimuli patterns, however, have not been explored. In this paper, a multi-cavity fluidic haptic feedback system is introduced with details of design, fabrication, and validation. The multi-cavity haptic feedback system can detect the physical touch with direction at the fingertip sensor. The direction of the force is reflected in the form of pressure deviation in the multi-cavity fingertip sensor. The feedback actuator generates various mechano-tactile stimuli patterns according to the pressure deviation from the fingertip sensor. Hence, users can identify the force with direction according to the stimuli patterns. The haptic feedback system is validated through two experiments. The initial experiment characterises the system and establishes the relationship between the fingertip sensor and feedback actuator. The subsequent experiment, a human interaction test, confirms the system’s capability to detect force with directions and generate corresponding tactile stimuli in the feedback actuator. The outcomes corroborate the idea that participants are generally capable of discerning changes in angle

    Mechanical assessment of novel compliant mechanisms for underactuated prosthetic hands

    Get PDF
    This paper proposes novel compliant mechanisms for constructing hand prostheses based on soft robotics. Two models of prosthetic hands are developed in this work. Three mechanical evaluations are performed to determine the suitability of the two designs for carrying out activities of daily living (ADLs). The first test measures the grip force that the prosthesis can generate on objects. The second determines the energy required and dissipated from the prosthesis to operate. The third test identifies the maximum traction force that the prosthesis can support. The tests showed that the PrHand1 prosthesis has a maximum grip force of 23.38 ± 1.5 N, the required energy is 0.76 ± 0.13 J, and the dissipated energy is 0.21 ± 0.17 J. It supports a traction force of 173.31 ± 5.7 N. The PrHand2 prosthesis has a maximum grip force of 36.13 ± 2.3 N, the required energy is 1.28 ± 0.13 J, the dissipated energy is 0.96 ± 0.12 J, and it supports a traction force of 78.48 ± 0 N. In conclusion, the PrHand1 prosthesis has a better performance in terms of energy and tensile force supported. The difference between the energy and traction force results is related to two design features of the PrHand2: fully silicone-coated fingers and a unifying mechanism that requires more force on the tendons to close the prosthesis. The grip force of the PrHand2 prosthesis was more robust than the PrHand1 due to its silicone coating, which allowed for an improved grip

    Modular integration of a 3 DoF F/T sensor for robotic manipulators

    Get PDF
    Robot assisted surgery and minimally invasive robotic surgery inherently entail that the hands of the surgeon indirectly interact with the patient tissues and organs even if the operator is out of the affected body. Hence, transferring sensor information from the inside of the patient to the outside of the surgeon may certainly improve the perception of the robotic enduser. To this aim – within the EU framework of the STIFF-FLOP project (STIFFness controllable Flexible and Learnable Manipulator for Surgical Operations), we developed a novel design of miniaturized and magnetic resonance compatible sensors for force and torque real-time measurements in robotic surgery. The sensor design has a hollow shape, whose geometry allows its integration and embedding within snake-like surgical robots and modular devices. According to typical requirements and specifications of a surgical procedure, the sensor operates in a range of force and torque of 0-5 N and 0-5 N⋅cm, respectively. Due to a customized tool and calibration procedure, an error of less than 15% of sensor range can be obtained. This novel transducer may advance force and haptic feedback in robot assisted and minimally invasive surgeries

    Control Design for Interval Type-2 Fuzzy Systems Under Imperfect Premise Matching

    Get PDF
    Abstract—This paper focuses on designing interval type-2 (IT2) control for nonlinear systems subject to parameter uncertainties. To facilitate the stability analysis and control synthesis, an IT2 TS fuzzy model is employed to represent the dynamics of nonlinear systems of which the parameter uncertainties are captured by IT2 membership functions characterized by the lower and upper membership functions. A novel IT2 fuzzy controller is proposed to perform the control process, where the membership functions and number of rules can be freely chosen and different from those of the IT2 T-S fuzzy model. Consequently, the IT2 fuzzymodel- based (FMB) control system is with imperfectly matched membership functions, which hinders the stability analysis. To relax the stability analysis for this class of IT2 FMB control systems, the information of footprint of uncertainties, and the lower and upper membership functions are taken into account for the stability analysis. Based on the Lyapunov stability theory, some stability conditions in terms of linear matrix inequalities are obtained to determine the system stability and achieve the control design. Finally, simulation and experimental examples are provided to demonstrate the effectiveness and the merit of the proposed approach

    Actuation and stiffening in fluid-driven soft robots using low-melting-point material

    Get PDF
    Soft material robots offer a number of advantages over traditional rigid robots in applications including human-robot interaction, rehabilitation and surgery. These robots can navigate around obstacles, elongate, squeeze through narrow openings or be squeezed - and they are considered to be inherently safe. The ability to stiffen compliant soft actuators has been achieved by embedding various mechanisms that are generally decoupled from the actuation principle. Miniaturisation becomes challenging due to space limitations which can in turn result in diminution of stiffening effects. Here, we propose to hydraulically actuate soft manipulators with low-melting-point material and, at the same time, be able to switch between a soft and stiff state. Instead of allocating an additional stiffening chamber within the soft robot, one chamber only is used for actuation and stiffening. Low Melting Point Alloy is integrated into the actuation chamber of a single-compartment soft robotic manipulator and the interfaced robotic syringe pump. Temperature change is enabled through embedded nichrome wires. Our experimental results show higher stiffness factors, from 9-12 opposing the motion of curvature, than those previously found for jamming mechanisms incorporated in separate additional chambers, in the range of 2-8 for the same motion

    Mechanical assessment of novel compliant mechanisms for underactuated prosthetic hands

    Get PDF
    This paper proposes novel compliant mechanisms for constructing hand prostheses based on soft robotics. Two models of prosthetic hands are developed in this work. Three mechanical evaluations are performed to determine the suitability of the two designs for carrying out activities of daily living (ADLs). The first test measures the grip force that the prosthesis can generate on objects. The second determines the energy required and dissipated from the prosthesis to operate. The third test identifies the maximum traction force that the prosthesis can support. The tests showed that the PrHand1 prosthesis has a maximum grip force of 23.38 ± 1.5 N, the required energy is 0.76 ± 0.13 J, and the dissipated energy is 0.21 ± 0.17 J. It supports a traction force of 173.31 ± 5.7 N. The PrHand2 prosthesis has a maximum grip force of 36.13 ± 2.3 N, the required energy is 1.28 ± 0.13 J, the dissipated energy is 0.96 ± 0.12 J, and it supports a traction force of 78.48 ± 0 N. In conclusion, the PrHand1 prosthesis has a better performance in terms of energy and tensile force supported. The difference between the energy and traction force results is related to two design features of the PrHand2: fully silicone-coated fingers and a unifying mechanism that requires more force on the tendons to close the prosthesis. The grip force of the PrHand2 prosthesis was more robust than the PrHand1 due to its silicone coating, which allowed for an improved grip
    corecore