64 research outputs found

    A prognostic model of all-cause mortality at 30 days in patients with cancer and COVID-19

    Get PDF
    Background: Patients with cancer are at higher risk of dying of COVID-19. Known risk factors for 30-day all-cause mortality (ACM-30) in patients with cancer are older age, sex, smoking status, performance status, obesity, and co-morbidities. We hypothesized that common clinical and laboratory parameters would be predictive of a higher risk of 30-day ACM, and that a machine learning approach (random forest) could produce high accuracy. Methods: In this multi-institutional COVID-19 and Cancer Consortium (CCC19) registry study, 12,661 patients enrolled between March 17, 2020 and December 31, 2021 were utilized to develop and validate a model of ACM-30. ACM-30 was defined as death from any cause within 30 days of COVID-19 diagnosis. Pre-specified variables were: age, sex, race, smoking status, ECOG performance status (PS), timing of cancer treatment relative to COVID19 diagnosis, severity of COVID19, type of cancer, and other laboratory measurements. Missing variables were imputed using random forest proximity. Random forest was utilized to model ACM-30. The area under the curve (AUC) was computed as a measure of predictive accuracy with out-of-bag prediction. One hundred bootstrapped samples were used to obtain the standard error of the AUC. Results: The median age at COVID-19 diagnosis was 65 years, 53% were female, 18% were Hispanic, and 16.7% were Black. Over half were never smokers and the median body mass index was 28.2. Random forest with under sampling selected 20 factors prognostic of ACM-30. The AUC was 88.9 (95% CI 88.5-89.2). Highly informative parameters included: COVID-19 severity at presentation, cancer status, age, troponin level, ECOG PS and body mass index. Conclusions: This prognostic model based on readily available clinical and laboratory values can be used to estimate individual survival probability within 30-days for COVID-19. In addition, this model can be used to select or classify patients with cancer and COVID-19 into risk groups based on validated cut points, for treatment selection, prophylaxis prioritization, and/or enrollment in clinical trials. Future work includes external validation using other large datasets of patients with COVID-19 and cancer

    Rapid Molecular Assays for Specific Detection and Quantitation of Loa loa Microfilaremia

    Get PDF
    Loa loa is a filarial nematode that infects over 10 million people in Africa. Most infections cause no symptoms, but individuals with large numbers of blood-stage microfilariae are at risk for fatal reactions to ivermectin, an antiparasitic agent used to treat and prevent infections with Onchocerca volvulus, a related filarial parasite that may occur alongside L. loa. To address the urgent need for a point-of-care L. loa diagnostic assay, we screened a Loa microfilaria gene expression library and identified 18 Loa-specific DNA targets. From two targets, we developed a novel, rapid quantitative PCR assay for estimating L. loa microfilaria burden. The assay is highly sensitive (detects a single microfilaria in 20 µL of blood) and correlates well with microfilaria counts obtained with conventional microscopic techniques. The assay is species-specific for L. loa compared with related filarial parasites (including O. volvulus) and can be used in its current form in resource-rich areas as a diagnostic tool for L. loa infection. Although modifications will be required to make point-of-care use feasible, our assay provides a proof of concept for a potentially valuable tool to identify individuals at risk for adverse reactions to ivermectin and to facilitate the implementation of filarial control programs

    Liquid Marble Actuator for Microfluidic Logic Systems

    Get PDF
    © 2018, The Author(s). A mechanical flip-flop actuator has been developed that allows for the facile re-routing and distribution of liquid marbles (LMs) in digital microfluidic devices. Shaped loosely like a triangle, the actuating switch pivots from one bistable position to another, being actuated by the very low mass and momentum of a LM rolling under gravity (~4 × 10 −6 kg ms −1 ). The actuator was laser-cut from cast acrylic, held on a PTFE coated pivot, and used a PTFE washer. Due to the rocking motion of the switch, sequential LMs are distributed along different channels, allowing for sequential LMs to traverse parallel paths. This distributing effect can be easily cascaded, for example to evenly divide sequential LMs down four different paths. This lightweight, cheap and versatile actuator has been demonstrated in the design and construction of a LM-operated mechanical multiplication device — establishing its effectiveness. The actuator can be operated solely by gravity, giving it potential use in point-of-care devices in low resource areas

    Impact of COVID-19 in patients on active melanoma therapy and with history of melanoma

    Get PDF
    INTRODUCTION: COVID-19 particularly impacted patients with co-morbid conditions, including cancer. Patients with melanoma have not been specifically studied in large numbers. Here, we sought to identify factors that associated with COVID-19 severity among patients with melanoma, particularly assessing outcomes of patients on active targeted or immune therapy. METHODS: Using the COVID-19 and Cancer Consortium (CCC19) registry, we identified 307 patients with melanoma diagnosed with COVID-19. We used multivariable models to assess demographic, cancer-related, and treatment-related factors associated with COVID-19 severity on a 6-level ordinal severity scale. We assessed whether treatment was associated with increased cardiac or pulmonary dysfunction among hospitalized patients and assessed mortality among patients with a history of melanoma compared with other cancer survivors. RESULTS: Of 307 patients, 52 received immunotherapy (17%), and 32 targeted therapy (10%) in the previous 3 months. Using multivariable analyses, these treatments were not associated with COVID-19 severity (immunotherapy OR 0.51, 95% CI 0.19 - 1.39; targeted therapy OR 1.89, 95% CI 0.64 - 5.55). Among hospitalized patients, no signals of increased cardiac or pulmonary organ dysfunction, as measured by troponin, brain natriuretic peptide, and oxygenation were noted. Patients with a history of melanoma had similar 90-day mortality compared with other cancer survivors (OR 1.21, 95% CI 0.62 - 2.35). CONCLUSIONS: Melanoma therapies did not appear to be associated with increased severity of COVID-19 or worsening organ dysfunction. Patients with history of melanoma had similar 90-day survival following COVID-19 compared with other cancer survivors

    Association Between Androgen Deprivation Therapy and Mortality Among Patients With Prostate Cancer and COVID-19

    Get PDF
    Importance: Androgen deprivation therapy (ADT) has been theorized to decrease the severity of SARS-CoV-2 infection in patients with prostate cancer owing to a potential decrease in the tissue-based expression of the SARS-CoV-2 coreceptor transmembrane protease, serine 2 (TMPRSS2). Objective: To examine whether ADT is associated with a decreased rate of 30-day mortality from SARS-CoV-2 infection among patients with prostate cancer. Design, Setting, and Participants: This cohort study analyzed patient data recorded in the COVID-19 and Cancer Consortium registry between March 17, 2020, and February 11, 2021. The consortium maintains a centralized multi-institution registry of patients with a current or past diagnosis of cancer who developed COVID-19. Data were collected and managed using REDCap software hosted at Vanderbilt University Medical Center in Nashville, Tennessee. Initially, 1228 patients aged 18 years or older with prostate cancer listed as their primary malignant neoplasm were included; 122 patients with a second malignant neoplasm, insufficient follow-up, or low-quality data were excluded. Propensity matching was performed using the nearest-neighbor method with a 1:3 ratio of treated units to control units, adjusted for age, body mass index, race and ethnicity, Eastern Cooperative Oncology Group performance status score, smoking status, comorbidities (cardiovascular, pulmonary, kidney disease, and diabetes), cancer status, baseline steroid use, COVID-19 treatment, and presence of metastatic disease. Exposures: Androgen deprivation therapy use was defined as prior bilateral orchiectomy or pharmacologic ADT administered within the prior 3 months of presentation with COVID-19. Main Outcomes and Measures: The primary outcome was the rate of all-cause 30-day mortality after COVID-19 diagnosis for patients receiving ADT compared with patients not receiving ADT after propensity matching. Results: After exclusions, 1106 patients with prostate cancer (before propensity score matching: median age, 73 years [IQR, 65-79 years]; 561 (51%) self-identified as non-Hispanic White) were included for analysis. Of these patients, 477 were included for propensity score matching (169 who received ADT and 308 who did not receive ADT). After propensity matching, there was no significant difference in the primary end point of the rate of all-cause 30-day mortality (OR, 0.77; 95% CI, 0.42-1.42). Conclusions and Relevance: Findings from this cohort study suggest that ADT use was not associated with decreased mortality from SARS-CoV-2 infection. However, large ongoing clinical trials will provide further evidence on the role of ADT or other androgen-targeted therapies in reducing COVID-19 infection severity

    Assessment of Regional Variability in COVID-19 Outcomes Among Patients With Cancer in the United States.

    Get PDF
    Importance: The COVID-19 pandemic has had a distinct spatiotemporal pattern in the United States. Patients with cancer are at higher risk of severe complications from COVID-19, but it is not well known whether COVID-19 outcomes in this patient population were associated with geography. Objective: To quantify spatiotemporal variation in COVID-19 outcomes among patients with cancer. Design, Setting, and Participants: This registry-based retrospective cohort study included patients with a historical diagnosis of invasive malignant neoplasm and laboratory-confirmed SARS-CoV-2 infection between March and November 2020. Data were collected from cancer care delivery centers in the United States. Exposures: Patient residence was categorized into 9 US census divisions. Cancer center characteristics included academic or community classification, rural-urban continuum code (RUCC), and social vulnerability index. Main Outcomes and Measures: The primary outcome was 30-day all-cause mortality. The secondary composite outcome consisted of receipt of mechanical ventilation, intensive care unit admission, and all-cause death. Multilevel mixed-effects models estimated associations of center-level and census division-level exposures with outcomes after adjustment for patient-level risk factors and quantified variation in adjusted outcomes across centers, census divisions, and calendar time. Results: Data for 4749 patients (median [IQR] age, 66 [56-76] years; 2439 [51.4%] female individuals, 1079 [22.7%] non-Hispanic Black individuals, and 690 [14.5%] Hispanic individuals) were reported from 83 centers in the Northeast (1564 patients [32.9%]), Midwest (1638 [34.5%]), South (894 [18.8%]), and West (653 [13.8%]). After adjustment for patient characteristics, including month of COVID-19 diagnosis, estimated 30-day mortality rates ranged from 5.2% to 26.6% across centers. Patients from centers located in metropolitan areas with population less than 250 000 (RUCC 3) had lower odds of 30-day mortality compared with patients from centers in metropolitan areas with population at least 1 million (RUCC 1) (adjusted odds ratio [aOR], 0.31; 95% CI, 0.11-0.84). The type of center was not significantly associated with primary or secondary outcomes. There were no statistically significant differences in outcome rates across the 9 census divisions, but adjusted mortality rates significantly improved over time (eg, September to November vs March to May: aOR, 0.32; 95% CI, 0.17-0.58). Conclusions and Relevance: In this registry-based cohort study, significant differences in COVID-19 outcomes across US census divisions were not observed. However, substantial heterogeneity in COVID-19 outcomes across cancer care delivery centers was found. Attention to implementing standardized guidelines for the care of patients with cancer and COVID-19 could improve outcomes for these vulnerable patients

    COVID-19 Severity and Cardiovascular Outcomes in SARS-CoV-2-Infected Patients With Cancer and Cardiovascular Disease

    Get PDF
    BACKGROUND: Data regarding outcomes among patients with cancer and co-morbid cardiovascular disease (CVD)/cardiovascular risk factors (CVRF) after SARS-CoV-2 infection are limited. OBJECTIVES: To compare Coronavirus disease 2019 (COVID-19) related complications among cancer patients with and without co-morbid CVD/CVRF. METHODS: Retrospective cohort study of patients with cancer and laboratory-confirmed SARS-CoV-2, reported to the COVID-19 and Cancer Consortium (CCC19) registry from 03/17/2020 to 12/31/2021. CVD/CVRF was defined as established CVD RESULTS: Among 10,876 SARS-CoV-2 infected patients with cancer (median age 65 [IQR 54-74] years, 53% female, 52% White), 6253 patients (57%) had co-morbid CVD/CVRF. Co-morbid CVD/CVRF was associated with higher COVID-19 severity (adjusted OR: 1.25 [95% CI 1.11-1.40]). Adverse CV events were significantly higher in patients with CVD/CVRF (all CONCLUSIONS: Co-morbid CVD/CVRF is associated with higher COVID-19 severity among patients with cancer, particularly those not receiving active cancer therapy. While infrequent, COVID-19 related CV complications were higher in patients with comorbid CVD/CVRF. (COVID-19 and Cancer Consortium Registry [CCC19]; NCT04354701)

    Clinical Characteristics, Racial Inequities, and Outcomes in Patients with Breast Cancer and COVID-19: A COVID-19 and Cancer Consortium (CCC19) Cohort Study

    Get PDF
    BACKGROUND: Limited information is available for patients with breast cancer (BC) and coronavirus disease 2019 (COVID-19), especially among underrepresented racial/ethnic populations. METHODS: This is a COVID-19 and Cancer Consortium (CCC19) registry-based retrospective cohort study of females with active or history of BC and laboratory-confirmed severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection diagnosed between March 2020 and June 2021 in the US. Primary outcome was COVID-19 severity measured on a five-level ordinal scale, including none of the following complications, hospitalization, intensive care unit admission, mechanical ventilation, and all-cause mortality. Multivariable ordinal logistic regression model identified characteristics associated with COVID-19 severity. RESULTS: 1383 female patient records with BC and COVID-19 were included in the analysis, the median age was 61 years, and median follow-up was 90 days. Multivariable analysis revealed higher odds of COVID-19 severity for older age (aOR per decade, 1.48 [95% CI, 1.32-1.67]); Black patients (aOR 1.74; 95 CI 1.24-2.45), Asian Americans and Pacific Islander patients (aOR 3.40; 95 CI 1.70-6.79) and Other (aOR 2.97; 95 CI 1.71-5.17) racial/ethnic groups; worse ECOG performance status (ECOG PS ≥2: aOR, 7.78 [95% CI, 4.83-12.5]); pre-existing cardiovascular (aOR, 2.26 [95% CI, 1.63-3.15])/pulmonary comorbidities (aOR, 1.65 [95% CI, 1.20-2.29]); diabetes mellitus (aOR, 2.25 [95% CI, 1.66-3.04]); and active and progressing cancer (aOR, 12.5 [95% CI, 6.89-22.6]). Hispanic ethnicity, timing, and type of anti-cancer therapy modalities were not significantly associated with worse COVID-19 outcomes. The total all-cause mortality and hospitalization rate for the entire cohort was 9% and 37%, respectively however, it varied according to the BC disease status. CONCLUSIONS: Using one of the largest registries on cancer and COVID-19, we identified patient and BC-related factors associated with worse COVID-19 outcomes. After adjusting for baseline characteristics, underrepresented racial/ethnic patients experienced worse outcomes compared to non-Hispanic White patients. FUNDING: This study was partly supported by National Cancer Institute grant number P30 CA068485 to Tianyi Sun, Sanjay Mishra, Benjamin French, Jeremy L Warner; P30-CA046592 to Christopher R Friese; P30 CA023100 for Rana R McKay; P30-CA054174 for Pankil K Shah and Dimpy P Shah; KL2 TR002646 for Pankil Shah and the American Cancer Society and Hope Foundation for Cancer Research (MRSG-16-152-01-CCE) and P30-CA054174 for Dimpy P Shah. REDCap is developed and supported by Vanderbilt Institute for Clinical and Translational Research grant support (UL1 TR000445 from NCATS/NIH). The funding sources had no role in the writing of the manuscript or the decision to submit it for publication. CLINICAL TRIAL NUMBER: CCC19 registry is registered on ClinicalTrials.gov, NCT04354701
    • …
    corecore