138,184 research outputs found

    Novel dynamical effects and glassy response in strongly correlated electronic system

    Full text link
    We find an unconventional nucleation of low temperature paramagnetic metal (PMM) phase with monoclinic structure from the matrix of high-temperature antiferromagnetic insulator (AFI) phase with tetragonal structure in strongly correlated electronic system BaCo0.9Ni0.1S1.97BaCo_{0.9}Ni_{0.1}S_{1.97}. Such unconventional nucleation leads to a decease in resistivity by several orders with relaxation at a fixed temperature without external perturbation. The novel dynamical process could arise from the competition of strain fields, Coulomb interactions, magnetic correlations and disorders. Such competition may frustrate the nucleation, giving rise to a slow, nonexponential relaxation and "physical aging" behavior.Comment: 5 pages, 4 figure

    A 3D Numerical Method for Studying Vortex Formation Behind a Moving Plate

    Get PDF
    In this paper, we introduce a three-dimensional numerical method for computing the wake behind a flat plate advancing perpendicular to the flow. Our numerical method is inspired by the panel method of J. Katz and A. Plotkin [J. Katz and A. Plotkin, Low-speed Aerodynamics, 2001] and the 2D vortex blob method of Krasny [R. Krasny, Lectures in Appl. Math., 28 (1991), pp. 385--402]. The accuracy of the method will be demonstrated by comparing the 3D computation at the center section of a very high aspect ratio plate with the corresponding two-dimensional computation. Furthermore, we compare the numerical results obtained by our 3D numerical method with the corresponding experimental results obtained recently by Ringuette [M. J. Ringuette, Ph.D. Thesis, 2004] in the towing tank. Our numerical results are shown to be in excellent agreement with the experimental results up to the so-called formation time

    Electronic, dynamical, and thermal properties of ultra-incompressible superhard rhenium diboride: A combined first-principles and neutron scattering study

    Get PDF
    Rhenium diboride is a recently recognized ultra-incompressible superhard material. Here we report the electronic (e), phonon (p), e-p coupling and thermal properties of ReB2_2 from first-principles density-functional theory (DFT) calculations and neutron scattering measurements. Our calculated elastic constants (c11c_{11} = 641 GPa, c12c_{12} = 159 GPa, c13c_{13} = 128 GPa, c33c_{33} = 1037 GPa, and c44c_{44} = 271 GPa), bulk modulus (BB β‰ˆ\approx 350 GPa) and hardness (HH β‰ˆ\approx 46 GPa) are in good agreement with the reported experimental data. The calculated phonon density of states (DOS) agrees very well with our neutron vibrational spectroscopy result. Electronic and phonon analysis indicates that the strong covalent B-B and Re-B bonding is the main reason for the super incompressibility and hardness of ReB2_2. The thermal expansion coefficients, calculated within the quasi-harmonic approximation and measured by neutron powder diffraction, are found to be nearly isotropic in aa and cc directions and only slightly larger than that of diamond in terms of magnitude. The excellent agreement found between calculations and experimental measurements indicate that first-principles calculations capture the main interactions in this class of superhard materials, and thus can be used to search, predict, and design new materials with desired properties.Comment: submitted to pr

    Giant isotope effect and spin state transition induced by oxygen isotope exchange in (Pr1βˆ’xSmx)0.7Ca0.3CoO3Pr_{1-x}Sm_x)_{0.7}Ca_{0.3}CoO_3

    Full text link
    We systematically investigate effect of oxygen isotope in (Pr1βˆ’xSmx)0.7Ca0.3CoO3(Pr_{1-x}Sm_x)_{0.7}Ca_{0.3}CoO_3 which shows a crossover with x from ferromagnetic metal to the insulator with spin-state transition. A striking feature is that effect of oxygen isotope on the ferromagnetic transition is negligible in the metallic phase, while replacing 16O^{16}O with 18O^{18}O leads to a giant up-shift of the spin-state transition temperature (TsT_s) in the insulating phase, especially TsT_s shifts from 36 to 54 K with isotope component Ξ±S=βˆ’4.7\alpha_S=-4.7 for the sample with x=0.175. A metal-insulator transition is induced by oxygen isotope exchange in the sample x=0.172 being close to the insulating phase. The contrasting behaviors observed in the two phases can be well explained by occurrence of static Jahn-Teller distortions in the insulating phase, while absence of them in the metallic phase.Comment: 4 pages, 5 figure

    Anisotropic Magnetoresistance in Charge-Ordering Na0.34(H3O)0.15CoO2Na_{0.34}(H_3O)_{0.15}CoO_2:Strong Spin-Charge Coupling and Spin Ordering

    Full text link
    Angular-dependent in-plane magnetoresistance (AMR) for single crystal Na0.34(H3O)0.15CoO2Na_{0.34}(H_3O)_{0.15}CoO_2 with charge ordering is studied systematically. The anisotropic magnetoresistance shows a twofold symmetry at high temperature with rotating H in the Co-O plane, while a sixfold symmetry below a certain temperature (TρT_\rho). At TρT_\rho, the symmetry of AMR changes from twofold to fourfold with rotating magnetic field (H) in the plane consisting of the current and c-axis. The variation of AMR symmetry with temperature arises from the subtle changes of the spin structure. These results give a direct evidence for the itinerant electrons directly coupled to the localized spins.Comment: 4 pages, 4 figure

    The Crimean Solar Maximum Year Workshop, selected reports

    Get PDF
    Problems associated with the transport of energy and acceleration of charged particles in solar flares are considered. Existing theories are compared with observation with a view to either discriminating between rival theories (such as whether hard X-rays are emitted by thermal or nonthermal bremsstrahlung), constraining existing theories (such as deduction of the number of nonthermal electrons present from spectroscopic diagnostics in the soft X-ray part of the spectrum), or suggesting theories (such as attempting to explain the observed spatial structure of microwave emission relative to alpha)
    • …
    corecore