27 research outputs found

    Regularizing Neural Machine Translation by Target-bidirectional Agreement

    Full text link
    Although Neural Machine Translation (NMT) has achieved remarkable progress in the past several years, most NMT systems still suffer from a fundamental shortcoming as in other sequence generation tasks: errors made early in generation process are fed as inputs to the model and can be quickly amplified, harming subsequent sequence generation. To address this issue, we propose a novel model regularization method for NMT training, which aims to improve the agreement between translations generated by left-to-right (L2R) and right-to-left (R2L) NMT decoders. This goal is achieved by introducing two Kullback-Leibler divergence regularization terms into the NMT training objective to reduce the mismatch between output probabilities of L2R and R2L models. In addition, we also employ a joint training strategy to allow L2R and R2L models to improve each other in an interactive update process. Experimental results show that our proposed method significantly outperforms state-of-the-art baselines on Chinese-English and English-German translation tasks.Comment: Accepted by AAAI 201

    Modeling Paragraph-Level Vision-Language Semantic Alignment for Multi-Modal Summarization

    Full text link
    Most current multi-modal summarization methods follow a cascaded manner, where an off-the-shelf object detector is first used to extract visual features, then these features are fused with language representations to generate the summary with an encoder-decoder model. The cascaded way cannot capture the semantic alignments between images and paragraphs, which are crucial to a precise summary. In this paper, we propose ViL-Sum to jointly model paragraph-level \textbf{Vi}sion-\textbf{L}anguage Semantic Alignment and Multi-Modal \textbf{Sum}marization. The core of ViL-Sum is a joint multi-modal encoder with two well-designed tasks, image reordering and image selection. The joint multi-modal encoder captures the interactions between modalities, where the reordering task guides the model to learn paragraph-level semantic alignment and the selection task guides the model to selected summary-related images in the final summary. Experimental results show that our proposed ViL-Sum significantly outperforms current state-of-the-art methods. In further analysis, we find that two well-designed tasks and joint multi-modal encoder can effectively guide the model to learn reasonable paragraphs-images and summary-images relations

    Contrastive Learning with Prompt-derived Virtual Semantic Prototypes for Unsupervised Sentence Embedding

    Full text link
    Contrastive learning has become a new paradigm for unsupervised sentence embeddings. Previous studies focus on instance-wise contrastive learning, attempting to construct positive pairs with textual data augmentation. In this paper, we propose a novel Contrastive learning method with Prompt-derived Virtual semantic Prototypes (ConPVP). Specifically, with the help of prompts, we construct virtual semantic prototypes to each instance, and derive negative prototypes by using the negative form of the prompts. Using a prototypical contrastive loss, we enforce the anchor sentence embedding to be close to its corresponding semantic prototypes, and far apart from the negative prototypes as well as the prototypes of other sentences. Extensive experimental results on semantic textual similarity, transfer, and clustering tasks demonstrate the effectiveness of our proposed model compared to strong baselines. Code is available at https://github.com/lemon0830/promptCSE.Comment: Findings of EMNLP 202

    Unleashing Infinite-Length Input Capacity for Large-scale Language Models with Self-Controlled Memory System

    Full text link
    Large-scale Language Models (LLMs) are constrained by their inability to process lengthy inputs. To address this limitation, we propose the Self-Controlled Memory (SCM) system to unleash infinite-length input capacity for large-scale language models. Our SCM system is composed of three key modules: the language model agent, the memory stream, and the memory controller. The language model agent iteratively processes ultra-long inputs and stores all historical information in the memory stream. The memory controller provides the agent with both long-term memory (archived memory) and short-term memory (flash memory) to generate precise and coherent responses. The controller determines which memories from archived memory should be activated and how to incorporate them into the model input. Our SCM system can be integrated with any LLMs to enable them to process ultra-long texts without any modification or fine-tuning. Experimental results show that our SCM system enables LLMs, which are not optimized for multi-turn dialogue, to achieve multi-turn dialogue capabilities that are comparable to ChatGPT, and to outperform ChatGPT in scenarios involving ultra-long document summarization or long-term conversations. Additionally, we will supply a test set, which covers common long-text input scenarios, for evaluating the abilities of LLMs in processing long documents.~\footnote{Working in progress.}\footnote{\url{https://github.com/wbbeyourself/SCM4LLMs}}Comment: Working in progres

    Retrieval-Augmented Classification with Decoupled Representation

    Full text link
    Retrieval augmented methods have shown promising results in various classification tasks. However, existing methods focus on retrieving extra context to enrich the input, which is noise sensitive and non-expandable. In this paper, following this line, we propose a kk-nearest-neighbor (KNN) -based method for retrieval augmented classifications, which interpolates the predicted label distribution with retrieved instances' label distributions. Different from the standard KNN process, we propose a decoupling mechanism as we find that shared representation for classification and retrieval hurts performance and leads to training instability. We evaluate our method on a wide range of classification datasets. Experimental results demonstrate the effectiveness and robustness of our proposed method. We also conduct extra experiments to analyze the contributions of different components in our model.\footnote{\url{https://github.com/xnliang98/knn-cls-w-decoupling}}Comment: preprin
    corecore