7,917 research outputs found

    Modeling the underlying mechanisms for organic memory devices: Tunneling, electron emission and oxygen adsorbing

    Full text link
    We present a combined experimental and theoretical study to get insight into both memory and negative differential resistance (NDR) effect in organic memory devices. The theoretical model we propose is simply a one-dimensional metallic island array embedding within two electrodes. We use scattering operator method to evaluate the tunneling current among the electrode and islands to establish the basic bistable I-V curves for several devices. The theoretical results match the experiments very well, and both memory and NDR effect could be understood comprehensively. The experimental correspondence, say, the experiment of changing the pressure of oxygen, is addressed as well.Comment: 5 pages, 3 figure

    THz Nanoscopy of Metal and Gallium Implanted Silicon

    Full text link
    Drude model successfully quantifies the optical constants for bulk matter, but it is not suitable for subwavelength objects. In this paper, terahertz near-field optical microscopy and finite element simulation are used to study gold patches fabricated by Gallium etching. Electron transport is discovered in determining the optical signal strength. The signal from substrate is more complicated and still not fully understood. As the etching area decreases, near-field interaction is not dominated by doping concentration, and a higher signal is observed near connected metals. With the help of simulation, the abnormal enhancement phenomenon is discussed in detail, which lays the foundation for further experimental verification

    A Leaf Recognition Algorithm for Plant Classification Using Probabilistic Neural Network

    Full text link
    In this paper, we employ Probabilistic Neural Network (PNN) with image and data processing techniques to implement a general purpose automated leaf recognition algorithm. 12 leaf features are extracted and orthogonalized into 5 principal variables which consist the input vector of the PNN. The PNN is trained by 1800 leaves to classify 32 kinds of plants with an accuracy greater than 90%. Compared with other approaches, our algorithm is an accurate artificial intelligence approach which is fast in execution and easy in implementation.Comment: 6 pages, 3 figures, 2 table

    Extraction of Uranium from Seawater: Design and Testing of a Symbiotic System

    Get PDF
    Uranium present in low concentration in ocean water has the potential to greatly augment the current fuel reserve for nuclear power generation, but the challenge of extracting it economically remains. Two new designs of seawater uranium extraction systems are proposed in this paper—a stationary system and a continuous system—both of which utilize a braided polymer adsorbent. The stationary system simplifies the recovery procedure, and it is predicted to produce uranium at 326/kg.Thecontinuoussystemisattachedtoanoffshorewindturbinesystemtoeliminatetheneedforadditionalmooringandincreasetheoverallenergy−gatheringabilityofthewindfarmsystem.Thissystemcouldmaximizetheadsorbentyieldandachieveaproductioncostof326/kg. The continuous system is attached to an offshore wind turbine system to eliminate the need for additional mooring and increase the overall energy-gathering ability of the wind farm system. This system could maximize the adsorbent yield and achieve a production cost of 403/kg of uranium.MIT Energy InitiativeS. D. Bechtel, Jr. Foundatio

    Influence of electrode thermal conductivity on resistive switching behavior during reset process

    Get PDF
    Resistive random access memory (RRAM) is the most promising candidate for non-volatile memory (NVM) due to its extremely low operation voltage, extremely fast write/erase speed, and excellent scaling capability. However, an obstacle hindering mass production of RRAM is the non-uniform physical mechanism in its resistance switching process. This study examines the influence of different electrode thermal conductivity on switching behavior during the reset process. Electrical analysis methods and an analysis of current conduction mechanism indicate that better thermal conductivity in the electrode will require larger input power in order to induce more active oxygen ions to take part in the reset process. More active oxygen ions cause a more complete reaction during the reset process, and cause the effective switching gap (dsw) to become thicker. The effect of the electrode thermal conductivity and input power are explained by our model and clarified by electrical analysis methods. Please click Additional Files below to see the full abstract
    • …
    corecore