92 research outputs found

    Singular Value Decomposition in Image Noise Filtering and Reconstruction

    Get PDF
    The Singular Value Decomposition (SVD) has many applications in image processing. The SVD can be used to restore a corrupted image by separating significant information from the noise in the image data set. This thesis outlines broad applications that address current problems in digital image processing. In conjunction with SVD filtering, image compression using the SVD is discussed, including the process of reconstructing or estimating a rank reduced matrix representing the compressed image. Numerical plots and error measurement calculations are used to compare results of the two SVD image restoration techniques, as well as SVD image compression. The filtering methods assume that the images have been degraded by the application of a blurring function and the addition of noise. Finally, we present numerical experiments for the SVD restoration and compression to evaluate our computation

    Genetic Determinants for Body Iron Store and Type 2 Diabetes Risk in US Men and Women

    Get PDF
    Background: High body iron store has been associated with an increased risk of type 2 diabetes (T2D); it remains unknown whether the genetic variants related to body iron status affect T2D risk. We aimed at comprehensively investigating the associations between the genetic variants related to body iron status and the T2D risk. Methodology/Principal Findings Six common SNPs related to body iron status from recent genome-wide association (GWA) studies were determined in the Nurses’ Health Study (NHS; 1,467 diabetic cases and 1,754 controls) and the Health Professionals Follow-up Study (HPFS; 1,124, diabetic cases and 1,298 controls). Plasma levels of ferritin, soluble transferrin receptor (sTfR), and transferrin were measured in NHS. Significant associations were observed for loci in TPMRSS6 with sTfR (P = 3.47×10−6), TF with transferrin (P = 0.0002 to 1.72×10−10); and HFE with ferritin (P = 0.017 to 1.6×10−8), sTfR (P = 0.007 to 7.9×10−6), and transferrin (P = 0.006 to 0.0007). The six SNPs together explained 5.7%, 2.7%, and 13.3% of the variation in plasma levels of ferritin, sTfR, and transferrin. After adjustment for the conventional risk factors, the T allele of SNP rs855791 in the TPMRSS6 gene was significantly associated with a 19% decreased risk of T2D (OR = 0.81; 95% CI = 0.66–0.98; P = 0.03) in men. Multiple tests attenuated this significant association to null. No associations were observed in women. SNPs at HFE and TF were not associated with diabetes risk in either sex. Dietary iron intake did not modify the associations of the newly identified loci with diabetes risk. Conclusions/Significance: The newly identified iron-related SNP rs855791 in TPMRSS6 was nominally associated with a decreased risk of T2D in men but not in women. The apparent differences by gender warrant further study

    Influence of Fetal and Maternal Genetic Susceptibility to Obesity on Birthweight in African Ancestry Populations

    Get PDF
    Fetal and maternal genetic propensity to obesity can influence birthweight. We investigated the effects of fetal and maternal genetic risk of obesity on birthweight and evaluated whether these genetic influences modify the well-known association between maternal pre-pregnancy body mass index (BMI) and birthweight. In 950 mother-baby pairs of African ancestry, a genetic risk score for adulthood obesity was generated for mothers (mGRS) and their babies (bGRS) as the weighted sum of BMI-increasing alleles of 97 single nucleotide polymorphisms known to be associated with BMI. The median GRS value was used as a cut-off to define high or low bGRS and mGRS. High bGRS was significantly associated with 70 g lower birthweight (95% Confidence Interval [CI] = −127.4 to −12.4) compared to low bGRS. mGRS was positively correlated with birthweight but the association was not significant. mGRS modified the significant birthweight-increasing effect of maternal pre-pregnancy BMI (P-for-interaction = 0.03); among mothers with low mGRS, those who were overweight or obese had 127.7 g heavier babies (95% CI = 27.1 to 228.2) compared to those who had normal weight. In summary, fetal obesity genetic risk loci exert direct influence on birthweight, and maternal loci modify the effect of pre-pregnancy BMI on birthweight

    Placental genetic variations in vitamin D metabolism and birthweight.

    Get PDF
    INTRODUCTION: Vitamin D has pleiotropic functions that regulate fetal growth and development. We investigated associations of common placental genetic variations in vitamin D metabolism with birthweight. METHODS: The study was conducted among participants (506 maternal-infant pairs) of a pregnancy cohort study. Data were collected using interviewer-administered questionnaires and post-delivery medical record abstraction. DNA, extracted from placental samples collected at delivery, was genotyped for eight single nucleotide polymorphisms (SNPs) in five vitamin D metabolism genes (CUBN, LRP2, VDR, GC, and CYP2R1). Linear and logistic regression models were used to evaluate associations of SNPs with birthweight and risk of low birthweight, respectively. Effect modification of associations by infant sex was examined using stratified analyses and interaction terms in regression models. RESULTS: Mean (standard-deviation) birthweight among all, male, and female infants was 3482.1 (549.9), 3544.6 (579.0) and 3419.2 (512.5) grams, respectively. Each copy of the minor allele of rs2282679 (GC) was associated with a 68.6 g (95%CI:3.1134.7 g) increase in birthweight overall. Sex-specific associations were observed for SNP rs4667591 (LRP2) (p-value for interaction \u3c 0.001). Each copy of the minor allele of rs4667591 was associated with a 124.7 g (95%CI:20.1229.0 g) increase in birthweight among female infants, and a suggested 81.6 g decrease in birthweight among male infants (95%CI:-183.7,20.5 g). DISCUSSION: Our study identified overall and sex-specific associations between placental genetic variations in vitamin D metabolism and birthweight. If confirmed by larger replication studies, observed associations may provide insight into mechanistic underpinnings of the relationships between placental vitamin D metabolism and birth size

    Quality control and conduct of genome-wide association meta-analyses

    Get PDF
    Rigorous organization and quality control (QC) are necessary to facilitate successful genome-wide association meta-analyses (GWAMAs) of statistics aggregated across multiple genome-wide association studies. This protocol provides guidelines for [1] organizational aspects of GWAMAs, and for [2] QC at the study file level, the meta-level across studies, and the meta-analysis output level. Real–world examples highlight issues experienced and solutions developed by the GIANT Consortium that has conducted meta-analyses including data from 125 studies comprising more than 330,000 individuals. We provide a general protocol for conducting GWAMAs and carrying out QC to minimize errors and to guarantee maximum use of the data. We also include details for use of a powerful and flexible software package called EasyQC. For consortia of comparable size to the GIANT consortium, the present protocol takes a minimum of about 10 months to complete
    corecore