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ABSTRACT

The Singular Value Decomposition (SVD) has many applications in image pro-

cessing. The SVD can be used to restore a corrupted image by separating signifi-

cant information from the noise in the image data set. This thesis outlines broad

applications that address current problems in digital image processing. In conjunc-

tion with SVD filtering, image compression using the SVD is discussed, including

the process of reconstructing or estimating a rank reduced matrix representing the

compressed image. Numerical plots and error measurement calculations are used to

compare results of the two SVD image restoration techniques, as well as SVD image

compression. The filtering methods assume that the images have been degraded by

the application of a blurring function and the addition of noise. Finally, we present

numerical experiments for the SVD restoration and compression to evaluate our

computation.

INDEX WORDS: Singular Value Decomposition, Rank, Eigenvectors, Eigen-

values, Singular Values, Filtering, Least Squares, Condition

Number, Convolution, Discrete Fourier Transform, Frequency,

Pseudo-Inverse, Point Spread Function
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1. INTRODUCTION

Linear Algebra and Matrix Theory are fundamental mathematical disciplines

that have numerous applications in various fields such as computer science, bi-

ology, physics, chemistry, economics and psychology. Image processing is used

to address problems in medicine, physics, biology, astronomy, geology, etc. Ma-

trix analysis methods are a primary tool in image processing with applications to

wavelets, computer vision, transformations in computer graphics, linear and non-

linear optimization, etc. Such applications have given rise to the development of a

more recent computing technology [4], [19], [15]. This thesis outlines broad appli-

cations of the Singular Value Decomposition (SVD) that address current problems

in digital images.

Hansen et al. (2006) discussed the approximation of a clear image from its

linear representation, by which we can solve an inverse problem to reconstruct

the true image. We will compare different techniques for filtering and denoising

images discussed by Hansen et al. and a similar approach to the inverse SVD

filtering. The outlined techniques include block denoising, inverse filtering, and

deconvolution of noisy and distorted images using the SVD. A widely known SVD

application to image compression is discussed to show the similarity of its approach

to noise reduction.

Most images are obtained by optical, electronic, or electro-optic means and

then digitized for processing, displaying, or archiving. Due to errors or noise in the

data collection process, image data may contain artifacts [16]. For example, medical

images obtained from MRI and PET scans often contain image signals corrupted by

radiation and many other factors. The display process can also introduce artifacts

that obscure the data contained in the image. It is often difficult to distinguish

between “foreign objects” that were not part of the image and the “true” signal
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itself. Before applying image manipulation techniques, such as segmentation or 3D

reconstruction, it is often necessary to remove noise for productive reconstruction

results [2].

Denoising is also a reconstruction process in images that is intended to remove

values that represent the noise or “foreign objects”. Noise filtering techniques,

such as mean and median filtering, have been used to restore corrupted image

data. In this thesis, we will investigate and discuss different types of models for

the representation of noisy and blurred measurements. After applying particular

noise and blur to images, we can compute the SVD of the image and apply an

appropriate filtering method to obtain a restored signal.
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2. MATHEMATICAL BACKGROUND ON THE SVD

2.1. Definitions

We provide the following definitions of concepts that arise frequently throughout

this thesis.

Definition 2.1.1. Let matrix A ∈ Rn×n and x ∈ Rn. We consider the equation

Ax = λx, x 6= 0,

where λ ∈ R. If a scalar λ and a nonzero vector x satisfy this equation, then λ is

called an eigenvalue of A, and x is called an eigenvector of A associated with λ.

Definition 2.1.2. Let matrix A ∈ Rm×n, then the rank of A is the largest number

of columns of A that constitute a linearly independent set.

Since the rank of AT equals to the rank of A, the rank may be equivalently defined

in terms of linearly independent rows.

Definition 2.1.3. An orthonormal set of vectors is a set of mutually orthogonal

unit vectors.

Such a set cannot contain a zero-vector and is necessarily linearly independent.

Definition 2.1.4. Let matrix U ∈ Rn×n. Then U is orthogonal if its inverse equals

to its transpose, U−1 = UT .

The set of columns of U is orthonormal.

Definition 2.1.5. An orthonormal basis for a vector subspace is a basis whose

vectors constitute an orthonormal set.

Since any basis may be transformed to an orthonormal basis, any finite-dimensional

complex vector space has an orthonormal basis.

2.2. The SVD, Properties, and Observations

E. Beltrami in 1873, (see [15]), studied the relationship between the SVD fac-

torization of an input matrix A to the eigenvalue decomposition of the matrices
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ATA and AAT . He discovered that for each matrix A ∈ Rn×n there are always

orthogonal matrices Q1, Q2 ∈ Rn×n, such that

QT
1AQ2 = Σ = diag(σ1(A), . . . , σn(A)) (1)

is a nonnegative diagonal matrix, where σ1(A)2 ≥ · · · ≥ σn(A)2 are the eigenvalues

of AAT (and also of ATA). Moreover, he found that the (orthogonal) columns of

Q1 and Q2 are eigenvectors of AAT and ATA, respectively.

Eckart and Young (1939), (see [20]), gave a clear and complete statement of

the singular value decomposition for a rectangular complex matrix. They view the

factorization A = V ΣV ∗ as a generalization of the “principle axis transformation”

for Hermitian matrices. While algebraists were developing the singular value and

polar decompositions for finite matrices, there was a parallel and apparently quite

independent development of related ideas by researchers in the theory of integral

equations. A pair of integral equations were introduced in the following form

ϕ(s) = λ

∫ b

a

K(s, t)ψ(t)dt and ψ(s) = λ

∫ b

a

K(t, s)ϕ(t)dt, (2)

where the functions ϕ(s) and ψ(s) are not identically zero. It was shown that

the scalar λ must be real since λ2 is an eigenvalue of the symmetric (and positive

semidefinite) kernel

H(s, t) =

∫ b

a

K(s, τ)K(t, τ)dτ.

If one thinks of K(s, t) as an analog of a matrix A, then H(s, t) is an analog

of AAT . Traditionally, the “eigenvalue” parameter λ in the integral equation lit-

erature is the reciprocal of what matrix theorists call an eigenvalue. Recognizing

that such scalars λ together with their associated pairs of functions ϕ(s) and ψ(s)

are, for many purposes, the natural generalization to the nonsymmetric case of

the eigenvalues and eigenfunctions that play a key role in the theory of integral

equations with symmetric kernels called λ an “eigenvalue” and the associated pair
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of functions ϕ(s) and ψ(s) “adjoint eigenfunctions” associated with λ [20]. These

“eigenvalues” and “adjoint eigenfunctions” gave the SVD certain properties that

will be discussed in the next section.

Let matrix A ∈ Rm×n. The Singular Value Decomposition is given by

A = UΣV T , (3)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and Σ ∈ Rm×m is a

matrix whose off-diagonal entries are all zeros and whose diagonal elements satisfy

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0:

Σ =




σ1

σ2

. . .

σn



.

The σi’s are unique and called the singular values of A. The column vectors of

U (also called the left singular vectors of A) are eigenvectors of the matrix AAT .

The columns of V (also called the right singular vectors of A) are eigenvectors of

the matrix ATA. Next, we state the SVD theorem and its proof provided by S.

Leon (see [19]).

Theorem 2.2.1 (The SVD Theorem) If matrix A ∈ Rm×n, then A has a singular

value decomposition.

Proof. Let ATA ∈ Rn×n be a symmetric matrix. Then its eigenvalues are all

real and it has an orthogonal diagonalizing matrix V . Furthermore, its eigenvalues

must all be nonnegative. To see this, let λ be an eigenvalue of ATA and x be an

eigenvector associated with λ. It follows that

||Ax||2 = xTATAx = λxTx = λ||x||2.

Hence,

λ =
||Ax||2

||x||2 ≥ 0.
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We may assume that the columns of V have been ordered so that the corresponding

eigenvalues satisfy

λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0.

The singular values of A are given by

σj =
√
λj j = 1, . . . , n.

Let r denote the rank of A. The matrix ATA will also have rank r. Since ATA is

symmetric, its rank equals the number of nonzero eigenvalues. Thus

λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0 and λr+1 = λr+2 = . . . = λn = 0.

The same relation holds for the singular values

σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0 and σr+1 = σr+2 = . . . = σn = 0.

The SVD will give us the rank of matrix A by simply getting the number of nonzero

singular values of A or the nonzero diagonal elements of Σ.

Now let

V1 = (v1, . . . , vr), V2 = (vr+1, . . . , vn)

and

Σ1 =




σ1 0 . . . 0

0 σ2
. . .

...
...

. . . 0
0 . . . σr


 . (4)

Thus Σ1 ∈ Rr×r is a diagonal matrix whose diagonal entries are the nonzero singular

values σ1, . . . , σr. The matrix Σ ∈ Rm×n is then given by

Σ =

[
Σ1 O
O O

]
.

The column vectors of V2 are eigenvectors of ATA associated with λ = 0. Thus

ATAvj = 0, j = r + 1, . . . , n
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and, consequently, the column vectors of V2 form an orthonormal basis forN(ATA) =

N(A). Therefore,

AV2 = 0

and, since V is an orthogonal matrix, it follows that

I = V V T = V1V
T
1 + V2V

T
2

A = AI = AV1V
T
1 + AV2V

T
2 = AV1V

T
1 . (5)

So far we have shown how to construct the matrices V and Σ of the singular

value decomposition. To complete the proof, we must show how to construct an

orthogonal matrix U ∈ Rm×m such that

A = UΣV T ,

or, equivalently,

AV = UΣ. (6)

Comparing the first r columns of each side of (6), we see that

Avj = σjuj j = 1, . . . , r.

Thus, if we define

uj =
1

σ j
Avj j = 1, . . . , r (7)

and

U1 = (u1, . . . , ur),

then it follows that

AV1 = U1Σ1. (8)
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The column vectors of U1 form an orthonormal set since

uT
i uj = (

1

σi
vT

i A
T )(

1

σj
Avj) =

1

σiσj
vT

i (ATAvj) =
σj

σi
vT

i vj = δij,

where 1 ≤ i ≤ r, 1 ≤ j ≤ r.

It follows from (7) that each uj, 1 ≤ j ≤ r, is in the column space of A. The di-

mension of the column space is r, so u1, . . . , ur form an orthonormal basis for R(A).

The vector space R(A)⊥ = N(AT ) has dimension m − r. Let {ur+1, ur+2, . . . , um}

be an orthonormal basis for N(AT ) and set

U2 = (ur+1, ur+2, . . . , um),

U = [U1 U2].

Thus, u1, . . . , um form an orthonormal basis for Rm. Hence U is an orthogonal

matrix. We still must show that UΣV T actually equals A. This follows from (8)

and (5) since

UΣV T = [U1 U2]

[
Σ1 O
O O

] [
V T

1

V T
2

]
= U1Σ1V

T
1 = AV1V

T
1 = A.

Now that we have shown how matrix A ∈ Rm×n can be decomposed into the

product UΣV T , let’s consider the following properties of the SVD.

1. The singular values σ1, . . . , σn of A are unique; however, the matrices U and V

are not unique.

2. Since AAT = (UΣV T )(UΣV T )T = (UΣV T )(V ΣTUT ) = UΣΣTUT , it follows

that U diagonalizes AAT and that the uj’s are eigenvectors of AAT . Similarly,

since V diagonalizes ATA, it follows that the vj’s are eigenvectors of ATA.

3. Comparing the jth columns of each side of the equation

AV = UΣ,

we get

Avj = σjuj j = 1, . . . , n.
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Similarly,

ATU = V ΣT ,

and hence

ATuj = σjvj for j = 1, . . . , n

ATuj = 0 for j = n+ 1, . . . , m.

4. If A has rank r, then

(i) v1, . . . , vr form an orthonormal basis for R(AT ).

(ii) vr+1, . . . , vn form an orthonormal basis for N(A).

(iii) u1, . . . , ur form an orthonormal basis for R(A).

(iv) ur+1, . . . , um form an orthonormal basis for N(AT ).

5. The rank of the matrix A is equal to the number of its nonzero singular values

(where singular values are counted according to multiplicity). A similar assumption

about eigenvalues is not true. For example, the matrix

B =




0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0




has rank 3 even though all of its eigenvalues are 0.

6. In the case that A has rank r < n, if we set

U1 = (u1, u2, . . . , ur), V1 = (v1, v2, . . . , vr)

and define Σ1 as in (4), then we obtain the following factorization called compact

form of the singular value decomposition of A:

A = U1Σ1V
T
1 . (9)

Obtaining the rank of a matrix is useful in many applications of Linear Alge-

bra. One example can be computing the number of solutions of a system of linear
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equations. In many applications, it is necessary to either determine the rank of a

matrix or to determine whether the matrix is deficient in rank. Gaussian elimi-

nation is one approach to obtain the rank by reducing the matrix to the echelon

form and then counting the number of nonzero rows. However, this approach will

often produce errors during the elimination process. The SVD presents a method

for determining how close the given matrix is to a matrix of smaller rank. The next

chapter demonstrates the SVD compression technique and shows how to get rank

reduced matrix for a desired reconstruction.
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3. THE SVD IMAGE RECONSTRUCTION AND

MATLAB

3.1. Image Compression using the SVD

The compact form (9) of the singular value decomposition of A is useful in

many applications, particularly in image compression. Furthermore, the SVD image

compression algorithm discards elements representing small singular values. The

analysis of image compression is given by J. Demmel (see [5]). To show how the

SVD compression works, let A be a matrix representing a given image (see section

3.2 for details on image representation), and A = UΣV T , then A can be written as

A = σ1u1v
T
1 + σ2u2v

T
2 + ... + σnunv

T
n ,

we can then obtain the truncated sum after the first k terms

Ak = σ1u1v
T
1 + σ2u2v

T
2 + ...+ σkukv

T
k .

We can choose k to be considerably less than n and still have the image cor-

responding to Ak very close to the original. The value k represents the rank of

the matrix Ak. The magnitude of the smallest nonzero singular value provides a

measure of how close A is to a matrix of lower rank. Ak is a compression of the data

represented by matrix A, where the amount of storage necessary for the original

matrix A was reduced. The SVD also has an interesting ability to adapt to the

local statistical variations of noise levels [27]. Small variations on the matrix A may

not affect the reconstruction and may well adapt to loss of information. If Ak has

rank k by construction, then

Ak =

k∑

i=1

σiuiv
T
i . (10)
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This means that we can represent the image A as a linear combination of the basis

images (uiv
T
i ). All the basis images are rank one and form an orthonormal basis

for image representation. Here, (10) is the best rank-k approximation of A. In a

sense, the following equation is minimized

||A− Ak||2 = ||
n∑

i=k+1

σiuiv
T
i ||2 = ||U




0 . . . 0

0 σk+1
. . .

...
...

. . . 0
0 . . . σn


V

T ||2 = σk+1. (11)

The vector space spanned by v1, . . . , vk+1 has dimension k + 1. In an m × n

size image, an effective compression technique is needed to represent the image

rather than transmitting or storing the entire m × n matrix. In (10), it will take

m× k+ n× k = (m+ n)× k words to store u1 through uk, and σ1v1 through σkvk,

from which we can reconstruct Ak. Thus, after compression Ak will be stored using

(m + n) × k words. Relative errors and compression ratios are approximated by

σk+1/σ1 and (m+ n) × k/(m× n), respectively, see also [5].

The following simple procedure implements the SVD image compression algo-

rithm using Matlab. An m × n matrix representing an input image is compressed

by retaining k < min{m,n} singular values and the corresponding singular vectors.

Obtain an input matlab loaded figure

load clown

I = ind2gray(X,map);

[m,n] = size(Z);

Show the original image

imshow(I,64);

Convert to double precision

I = im2double(I);

Compute the SVD of the matrix and obtain the singular values

[U,S,V] = svd(I);
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sigma = diag(S);

Initialize rank k=1 approximation

I1 = sigma(1)*U(:,1)*V(:,1)’;

Reduce the singular values by a chosen rank k of the matrix

for i=1:k

I1 = I1 + sigma(i)*U(:,i)*V(:,i)’;

end

imshow(I1,64);

For displaying the double class matrix as an image use

imagesc(I1); colormap(gray)

To plot singular values use the logarithmic based scale plot

semilogy(s/s(1),’.-’);

ylabel(’singular values’);

grid;

More results of applying the SVD compression algorithm to the n × n matrix

representing “Lena” image are shown in Figure 2. Compression by applying the

SVD to the blocks of the matrix is discussed in Chapter 4, and shown in Figures 10,

11, and 12. In Chapter 5, results obtained via SVD compression are compared to the

original image data by using Mean Square Error (MSE) and Peak Signal-to-Noise

Ratio (PSNR). The MSE measures the average of the square of the error between

the approximated result and the original image. The PSNR is the ratio in log scale

between the maximum possible signal verses the MSE. The MSE and PSNR plots

are shown in Figure 3. Compression ratio (CR) is also used for estimating the ratio

of image quality by computer load time, thus determining the efficiency of the SVD

compression technique.
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Figure 1: “clown” image obtained from Matlab mat files. Its reduced rank com-
pression with corresponding singular value plots that show the number of ranks
reduced.
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Figure 2: The Figure shows more examples of the SVD compression using “Lena”
image sample obtained from [2]. The image becomes compressed as we retain
small number of singular values and their corresponding singular vectors. However,
critical information of the image is lost due to the removal of significant singular
values. Here, the best compression is shown after retaining 85 out of 256 singular
values.
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Figure 3: Mean square error and peak signal-to-noise ratio plots for results in Figure
2. The singular values are indicated by the “boxes” on the graph.

3.2. Image Representation

There are several artifacts that arise in an image data during the display or data

collection process. For example, MRI (Magnetic Resonance Imaging) scanned im-

ages are obtained by an instrument that contains magnetic coils that can resonate

with parts of the object (e.g. tissue) by a magnetic field. High resonance produces

different density than lower resonance in scanned images. As a result, high-level

of noise is generated, since density plays important role in determining how much

intensity is present in the image data. PET (Positron Emission Tomography) scan

is another example of medical image sample that often gets affected by noise in-

terference. The PET imaging technique scans and outputs an image based on the
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energy quantity it radiates to reflect the intensity of an object in the image. There

is a likelihood that random radiation can corrupt the obtained image [16], [2]. In

addition, MRI and PET scanned images often are very large in data size, requiring

a large storage space. Before applying further image manipulation techniques such

as segmentation, compression, or 3D reconstruction, it is often necessary to remove

noise for productive reconstruction results.

A digital image in Matlab is represented by a matrix of values. A pixel in an

image corresponds to an intensity value in the matrix. We have shown that the

SVD compression works by discarding insignificant pixel values without affecting

the quality of the image. In our Matlab implementation, we use monochrome im-

ages that can be represented as an image with array of two dimensions. Digital

monochrome (black-and-white) images are referred to as intensity images, or gray-

scale images. This type of image can be thought of as a discretized two-dimensional

function, where each point represents the light intensity at a particular spatial coor-

dinate (see section 3.3, Figure 4). These spatial coordinates (otherwise, interpreted

as the brightness of pixel) are usually represented in a Cartesian system as a pair of

nonnegative integer values typically denoted as (i, j) [24]. The entries of our matrix

A are nonnegative numbers corresponding to the measures of the gray levels.

3.3. The Fourier Transform, DCT and Convolution

Spatial filters are often used to suppress corrupted pixels (noise) in images.

When we work in the spatial domain of images, we are operating directly on the

images’ pixel values. However, in the frequency domain operation, mathematical

tools such as, the Discrete Fourier Transform (DFT) are used to convert the 2D

function that an image represents into an alternate formulation. This formulation

consists of coefficients correlating to spatial frequencies. The analysis of the level

of correlation helps retain only significant components while dumping other factors
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[24], [11].

input "blood" image Fourier Transform

input "cameraman" image Fourier Transform

Figure 4: Displaying Fourier transform of “blood” and “cameraman” images.

In Figure 4, the low frequency components are located at the corners of the

Fourier transform display for each image. Where as, the high frequency components

are located in the middle. The bright stripes in the Fourier transform display of the

“cameraman” image is as a result of the high spatial frequencies that are present

in its background.

The Discrete Fourier Transform (DFT) of an n-sized vector v is the vector

y = φx, where φ ∈ Rn×n is a matrix defined as φjk = ωjk, and ω = cos 2π/n −

i sin 2π/n. The inverse form of vector y is given by x = φ−1y, and this is known as

Inverse Discrete Fourier Transform (IDFT) [5]. The inverse transform is applied to
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map the frequency coefficients back to gray-level pixel intensities. Using DFT, the

transformation kernel is linear, separable and symmetric. Fast implementations are

possible. Results for image filtering in the Fourier domain are shown in Chapter 5

of this thesis.

A similar linear transform that uses real numbers is the Discrete Cosine Trans-

form (DCT). As defined in [1], we can mathematically define the DCT by an or-

thogonal matrix U of order m as follows

U(i, j) =





√
1
m
, if i = 1,√

2
m

cos(π(2j−1)(i−1)
2m

), if 2 ≤ i ≤ m.

The DCT of an image matrix A ∈ Rm×n is then defined by the matrix X =

UAV T , where U and V are orthogonal matrices. DCT helps decorrelate an image

data, after which each linear transform coefficient can be encoded independently

without losing efficiency. To get its Inverse Discrete Cosine Transform (IDCT), we

define back the matrix, such that A = UTXV . The DCT is linear, because the

orthogonal matrices U and V are independent of A.

Convolution is an operation in Fourier analysis, Fourier series, or DFT. As

shown in [5], consider the Fourier transform F (f ∗ g) = F (f) × F (g). This means

that Fourier transform of the convolution is the product of the Fourier transforms.

The convolution theorem states that convolution in the time domain is equivalent

to multiplication in the frequency domain, that is Fourier transform, or DFT reduce

the convolution operation F (t) ∗ F (g) to multiplication F (f) × F (g). The Fourier

transform using the above functions f and g is given by

(f ∗ g)(x) ≡
∫ ∞

−∞
f(x− y)g(y)dy.

On the other hand, let a(x) =
∑n−1

k=0 akx
k and b(x) =

∑n−1
k=0 bkx

k be degree (n−1)

polynomials. Then their product is given by c(x) ≡ a(x).b(x) =
∑2n−1

k=0 ckx
k, where

the coefficients c0, . . . , c2n−1 are provided by the discrete convolution [5].



20

In signal and image processing, convolution is of fundamental importance. Two-

dimensional convolution, which is used for image signals, provides the smoothing

operation that uses a filter mask known as “kernel”. Image filtering techniques are

applied by the smoothing operation, which simply uses a moving average kernel.

Convolving or multiplying an image signal by a blur parameter will introduce a

blur to an image (shown on the top right corner of Figure 5). In the next chapter,

we will define what a kernel is and how image filtering operates.

Original Image Motion Blurred Image

blurred Image Sharpened Image Using MATLAB "imfilter"

Figure 5: Blur filtering example using the Matlab imfilter function. The top right
picture shows motion blurred image at 45 degree angle, and the bottom left picture
shows Gaussian filter. Both images are deblurred and sharpened using Matlab
operation “imfilter”.
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4. IMAGE FILTERING AND DENOISING

TECHNIQUES

The filtering operation commonly uses a “neighborhood mask”, also known as

kernel, and slides it across the input image at each point. The kernel contains

multiplication factors and its filter works by applying a kernel matrix pixels and

their neighbors. Once all values have been multiplied, the pixel is replaced with

the sum of the products [9]. Pixels within the current neighborhood are combined

by using some formula, then finally the output pixel is computed. For example, by

using a 3×3 kernel, the kernel filtered rows are combined via summation across the

orthogonal (column-wise) direction, thereby producing pixels in the output image

that have been filtered in a 2D fashion. Different types of filtering operations can

be applied by adjusting kernel size. In the following sections, we will discuss median

and averaging filter techniques by using a k × k kernel size. First, we will discuss

the types of noise and blur parameters that are used during the filtering process.

The following general steps were taken to experiment on filtering techniques in

digital images:

1. Obtain a “clear” sample image.

2. Convolve the image with a PSF filter to introduce a blur (noise-free case) or

apply zero-mean Gaussian noise.

3. Run the corrupted image through the filter.

4. Compare the processed image to the original image.

4.1 Noise Model and Blur Parameters

The addition of noise in an image causes an appearance of false, spotty elements.

In our image sample, Gaussian white noise was used to introduce a spatially in-

dependent noise. Gaussian white noise is produced randomly by a probability
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distribution function. The magnitude of this noise tracks the local variance of the

image. We will use a zero-mean Gaussian white noise by adjusting its noise vari-

ance (σ). In general, Gaussian noise with variance σ and mean µ has probability

density function

η(x) =
1√

2πσ2
e−(x−µ)2/2σ2

.

Adding the noise represented by η to our image sample A will produce a corrupted

image g, such that g = A + η.

In noise free cases, a blur can be modeled using a shift-invariant operation,

which allows a transform that shifts the input signal independent of blur position.

It can be expressed using the least squares model, since the blurring is assumed

to be a linear operation. To blur an image, we can convolve it with a PSF (Point

Spread Function) that describes the response of an imaging system to a point source

or point object. The PSF allows every point in the original image to spread out

the same way in forming the blurry image [26]. Once convolved with an image, the

Matlab function imfilter(’motion’,n,θ) filters the image, given the linear motion of

a camera by n pixels and an angle of θ degrees in a counter-clockwise direction.

The blurring model using the convolution operation ’∗’ is given by

g(x, y) = PSF (x, y) ∗X(x, y) + η(x, y), (12)

where the PSF is to be convolved by the sample image X(x, y), and n(x, y) is a

matrix representing the Gaussian white noise. It is also shown in [7] that singular

vectors of a degraded image can be used to estimate an unknown PSF, while the

smallest singular values are used to estimate the noise variance.

4.2 Mean and Median Filtering

Very simple noise removal techniques that are widely used for comparing with

other filtering methods include Mean and Median filtering. In Median filtering
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Original Image PSF with 20 pixels at 45 degree angle

Blurred by PSF Blur and Noise

Figure 6: Convolving the “cameraman” image by a PSF and adding a Gaussian
noise; In the spatial domain, the PSF (shown on the top right corner) describes the
degree to which an optical system blurs (spreads) a point of light.
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of noisy images, the value of the output pixels are determined by the Median of

the neighborhood pixels within a defined mask. It is able to reduce pixel outliers

without affecting the sharpness or the quality of the image. In Mean filtering, the

output pixels are set to an average of the pixel values in the neighborhood mask of

the corresponding input pixels. The Median is much less sensitive than the Mean

to pixel outliers [2]. For this reason, Median filtering is considered a better ap-

proach than Mean filtering for reducing noise in images. Visual inspection may not

lead to the conclusion that Median filter produces better result than Mean filter.

However, PSNR (Signal-to-Noise Ratio) plots of the Mean and Median filtering

for Figure 6 and Figure 7 can be used for comparison of the two filter methods.

The higher the PSNR, the better the quality of the filtered, or reconstructed image.



25

zero−mean Gaussian noise variance=0.0.05

50 100 150 200 250

50

100

150

200

250

Mean filter using 9x9 kernel

50 100 150 200 250

50

100

150

200

250

Input Image

50 100 150 200 250

50

100

150

200

250

Mean filter using 7x7 kernel

50 100 150 200 250

50

100

150

200

250

Figure 7: Example using Mean filter
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50 100 150 200 250

50

100

150

200

250

Median filter using 9x9 kernel

50 100 150 200 250

50

100

150

200

250

Input Image

50 100 150 200 250

50

100

150

200

250

Median filter using 7x7 kernel

50 100 150 200 250

50

100

150

200

250

Figure 8: Examples using Median filter
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Figure 9: PSNR plots for the Mean and Median filter results using adjusted kernel
sizes: 3 × 3, 7 × 7, 9 × 9, 11 × 11, and 17 × 17. The PSNR for the Mean filter
decreases as window size increases, which implies that there will be significant loss
in image quality. Although the PSNR for the Median filter technique generally
decreases as the window size increases, the bottom plot shows higher PSNR values
compared with the corresponding PSNR values for the Averaging filter technique.
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4.3 Noise Suppression by Compression Using the SVD Blocks

Noisy elements in our sample image contain representation of the base images

that contain spots. These base images correspond to the singular vectors and

singular values of matrix A, see Figure 13. For the SVD block denoising procedure,

we want to divide the image sample A into square blocks of size b × b by forming

a w × l block matrix A. Singular values and corresponding singular vectors will

contain complete information about the image blocks. The noise is reflected on

the changes in singular values and singular vectors, and this is true for the SVD

representation of the square b× b blocks as well as the whole image [8]. Moreover,

high frequency information also corresponds to noise. An optimal threshold can

be chosen to discard higher frequency values. We can discard small singular values

that correspond to these higher frequency values by truncating the SVD of each

blocks. Algorithm for nonlinear image noise filtering based on SVD processing of

image blocks is presented by Devcic et. al. [8].

A given image is divided into blocks by the following steps and compressed by

removing singular values less than a threshold value.

1. Divide the m×n matrix A into b× b submatrices A(w,l) such that, 1 ≤ w ≤ m/b.

2. Transform each submatrix A(w,l) into A
(w,l)
1 by using the SVD. Set singular values

that are smaller than a threshold ε equal to zero.

3. Collect all (i, j) elements of A
(w,l)
1 to make an m/b× n/b matrix A

(i,j)
2 .

4. The A
(i,j)
2 matrices are put in the (i, j) position to produce the m×n matrix A3.

After applying noise to an input sample image, the above procedure tries to

suppress noise by discarding small singular values. Using the block SVD procedure

did not work well for noisy data, see Figure 10. Instead, we applied the algorithm

for compression of a signal without noise.

4.4 The SVD Inverse Filtering
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PSNR (Whole) = 66.76 with MSE = 0.0137

PSNR (Block) = 62.18dB with MSE = 0.0394

Truncation(epsilon) = 0.07

Figure 10: Figure shows noise suppression by computing the SVD of 128 × 128
blocks and setting singular values less than epsilon = 0.07 to zero.
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Figure 11: Image compression using the SVD blocks of 128 × 128.
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Figure 12: Input signal was compressed by applying the SVD of its 8 × 8 blocks
and then discarding small singular values less than the threshold value, epsilon =
0.001, PSNR = 102.21, and MSE = 3.91 × 10−6.
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Figure 13: Displaying the number of basis vectors affected by noise. Logarithmic
plots of normalized eigenvectors provide a better way to visually detect the noise
artifacts.



32

Digital image processing problems can often be modeled by using systems of

linear equations. Systems of linear equations are one of the most fundamental

and important problems in linear algebra, and are defined in the form of finding a

solution x to the equation

Ax = b. (13)

Our sample filtering approach can be modeled using the equation b = Ax +

η, where b represents data affected by error, A is the error or blurring factor,

x represents the sample image, and η is the error data itself [3]. For numerical

definitions, we used the notation δ to represent the perturbation or error factor of

our data. The SVD filtering for this method assumes a blurred signal b is the result

of a spatially invariant blurring matrix A multiplied by the true signal x. In light

of [22], the image restoration model for a PSF matrix A ∈ Rm×n using the integral

form is expressed as

b(m) =

∫

φ

A(m,n)x(n)dn + η(m),

where φ is a closed region containing the domain of the image. The approach is to

find the best reconstruction of the true signal x using the SVD representation of A.

Recall that the full SVD factorization

A =
[
u1 u2 . . . ur ur+1 . . . um

]




σ1

. . .

σn




[
v1 v2 . . . vr vr+1 . . . vn

]T
(14)

reveals the nullspace and range of the matrix A. More specifically, the range of

A is spanned by the vectors u1, u2, . . . , ur. The range of AT is spanned by the

vectors v1, v2, . . . , vr. The nullspace of A is spanned by the vectors vr+1, vr+2, . . . , vn,

whereas the nullspace of AT is spanned by the vectors ur+1, ur+2, . . . , um. The
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columns of V that correspond to the zero singular values of A span the nullspace

of A, while the columns of U that correspond to the nonzero singular values of A

span the range of A. These properties allow the computation or representation of

the vector b from the least squares problem Ax = b, such that b = UΣV Tx. It

follows that

b = UΣ



vT
1
...
vT

n


 x.

If we project x into V -space, we get the inner product of vi and x

b = UΣ



vT
1 x
...

vT
nx


 ,

expanding the matrix Σ and multiplying by the singular values, we get

b = U



σ1 0

. . .

0 σn






vT
1 x
...

vT
nx


 = U



σ1v

T
1 x
...

σnv
T
nx


 .

The expansion by eigenvectors ui will give us

b =
n∑

i=1

(σiv
T
i x)ui. (15)

We have shown that a low-pass filter on the transformation from x-space to

b-space has been created, meaning that if we zero out small singular values in the

matrix Σ, then the projections of the input vector x onto the corresponding v

vectors will not pass through. We can “low-pass” filter noisy measurements in the

input [6]. As discussed earlier, most of the noise elements contribute to the high

frequency content of an image. Low-pass kernels help us reduce these high spatial

frequency components. In contrast, using a high-pass filter helps attenuate low

frequency components. By using high-pass kernel, regions in an image of constant

brightness are mapped to zero and the fine details of an image are emphasized [24].

High-pass filters have the unfortunate side effect of also highlighting noise along

with the fine details of an image, see Figure 14.
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sample image noisy image

3x3 low pass filter 7x7 high pass filter

Figure 14: Examples of lowpass and highpass filtering. A Lowpass filter attenuates
high frequencies while “passing” low frequencies. A Highpass filter attenuates low
frequencies while “passing” high frequencies.
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Assuming that all singular values are strictly positive and that A is a square

matrix, the inverse of A is given by

A−1 = V Σ−1UT .

Since Σ is a diagonal matrix, its inverse Σ−1 is also diagonal, with entries 1/σi for

i = 1, . . . , n. If we use the full factorization of square matrix A, the image can be

represented as a linear combination of the basis images (uiv
T
i ). All the basis images

are rank one and form an orthonormal basis for image representation. Similarly,

A−1 =
n∑

i=1

1

σi

viu
T
i .

The inverse solution for our least squares equation can be written as

x = A−1b = V Σ−1UT b =
n∑

i=1

uT
i b

σi

vi. (16)

In this type of observation, noisy data enters the reconstructed image in the form

of the inverted noise A−1b. The SVD approach can be used to damp effects caused

by division by the small singular values, avoiding any division by zero [13]. Mean-

while, we also know that changes on singular values and singular vectors occur in

the presence of noise. We can simply discard small singular values and singular

vectors by truncating the above expression by a parameter k. A similar approach

is discussed in the previous section, where we minimize the rank of a matrix to

reduce noise.

The inverted noise contribution to the above solution is given by

A−1e = V Σ−1UT e =

n∑

i=1

uT
i e

σi
vi.

Since high frequency information occurs when we divide by small singular value σn,

we can leave the high-frequency components out by using basis vector representation

of the image. Basis vectors (ui) of this expression provide the representation of a
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certain frequency of the image. The amount of information of the frequency can be

measured using these basis vectors. High frequency components on the term uT
ne,

which are contributed by the division of small singular values σn, can be discarded.

The error component uT
ne is magnified to leave high-frequency out by truncating

equation (16) expression to

xk =
k∑

i=1

uT
i b

σi

vi ≡ A†
kb. (17)

Thus, we have introduced the rank k matrix such that

A†
k = [v1, . . . , vk]



σi

. . .

σk




−1 

uT

1
...
uT

k


 =

k∑

i=1

1

σi

viu
T
i .

The expression in equation (17) uses the pseudoinverse (A†
k) of A. The pseu-

doinverse (also known as Moore-Penrose inverse) lets us write the solution of the

full-rank, overdetermined least squares problem as simply x = A†b, [5]. Using

pseudoinverse, A† = V Σ†UT leading to x̂ = A†b = V Σ†UT b, which implies that

x̂ = V Σ†UT b. In general, x̂ = A†b is our defined minimum-norm, least squares

solution.

We know that Σ† is produced by taking the inverses of the non-zero singular

values and setting the smallest and zero singular values to zero. The solution x of

the linear system is constructed in such a way that a minimum norm solution is

considered, where x has no components in the nullspace. Whereas, a least squares

solution is considered, where x maps into a b vector in the range, whose difference

vector with the measured b has the smallest possible length [21]. If we have a

measured vector b with equal number of rows of A, we wish to find the vector x̂

which minimizes the error of the following Euclidean norm

||b− Ax||22 (18)
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Given the proof provided by [19], we can compute the least squares solution as

follows: given the SVD of A, it follows that

||b− Ax||22 = ||UT b− Σ(V Tx)||22.

Using Matlab we can compute the solution x̂ by setting

x̂ = V




c1
σ1
...
cr

σr

αr+1
...
αn




,

where αr+1 through αn are arbitrarily chosen, and c = UT b. It can be shown that

U =
Av1

σ1

, . . . ,
Avr

σr

, ur+1, . . . , un,

where the columns of U form an orthonormal basis for the range space, and ur+1

through un are chosen to augment the first r linearly independent columns. This

is because if we let c = UT b and y = V Tx, since U is orthogonal it follows that

||b− Ax||22 = ||UT b− Σ(V Tx)||22,

which can also be expressed as

||
[
c1
c2

]
−

[
Σ1 0
0 0

] [
y1

y2

]
||22 = ||

[
c1 − Σ1y1

c2

]
||22 = ||c1 − Σ1y1||22 + ||c2||22,

where c1 and y1 are vectors in Rr. It can be easily verified that the Euclidean norm

||b− Ax||22 will be minimal if and only if

||c1 − Σ1y1||2 = 0.

The above Euclidean norm can also be expressed in the form
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||Σ




c1
σ1
...
cr

σr

αr+1
...
αn




− UT b||2.

We can then compute x such that,

x̂ = V

[
Σ−1

1 0
0 0

] [
c1
c2

]
= V Σ†UT b.

Thus x is a solution to the least squares problem if and only if x = V y. If we set

yi = (1/σi)u
T
i b for i = 1, . . . , r, we can solve x = y1v1 + . . .+ yrvr.
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4.5 The SVD Deconvolution with Noise and Blur

For our SVD deconvolution experiment, we will use the blurring matrix sug-

gested by Hansen et al to form our filter matrix A. We will approach the 2D

filtering process by using implemented PSF and computing its SVD. Provided that

PSF matrix A is space invariant, we will use our least squares model and com-

pute a solution x̂ that will represent the reconstructed signal. This method is also

compared with pseudo-inverse filtering approach. By applying regularization into

the deconvolution process, the SVD method can be shown to restore a corrupted

image.

The algorithm for the SVD deconvolution using pseudo-inverse approach dis-

cussed in section 4.4 and the PSF provided by Hansen et al (2006) is as follows

1. Inputs:

a. Sample image I, x = I(:), where x is n× 1.

b. kernel K of size p× 1, where p is odd integer.

2. Construct PSF obtained via [13]

to get K to form Toeplitz matrix A of size n× n.

3. Multiply A by x to form the blurred image b such that

b = A ∗ x.

4. Deconvolve the blurred by approximating the pseudo-inverse of Σ

x̂ = V Σ†UT b.

In our results in Figure 12, we have resized the input signal to minimize high

computation time that resulted from vectorizing the input and multiplying it by a

large matrix A. Although we have reduced the size of our sample x significantly,

while losing quality of the picture, the reconstructed result x̂ seems to approximately

restore the blurred and noised signal b. However, an appropriate blurring may not

be applied on our input signal x. We may need to analyze our blurring matrix
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Figure 15: Image filtering example using the SVD. PSF matrix A of size 1681×1681
was created by using a Toeplitz matrix provided by [13]. Input signal Matlab
sample “Lena” image resized to size of 41 × 41 and blurred by A after applying
a random noise. The reconstructed signal x̂ gives the best approximation for a
restored picture.



41

True Signal x

10 20 30

10

20

30

blurring PSF matrix A

20040060080010001200

200

400

600

800

1000

1200

blurred signal with random noise

10 20 30

10

20

30

reconstructed signal

10 20 30

10

20

30

Figure 16: Image filtering example using the SVD. The PSF matrix A of size
1369 × 1369 was created by using a Toeplitz matrix provided by [13]. Input signal
is a constructed binary object of size 37 × 37. Random noise is still present in the
reconstructed signal x̂.
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Figure 17: Pseudo-inverse filtering using Matlab generated motion PSF. Frequency
components of the PSF that are below the threshold value ε = 10−2 are eliminated.
The noise term is ignored in the reconstruction process, and the result is highly
corrupted with noise due to loss of frequency information.
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A. Typically, a blurring matrix or PSF is an ill-conditioned matrix. A matrix is

ill-conditioned if the condition number is too large. The condition number of our

blurring matrix is discussed in the next chapter. In Figure 18, we have plotted the

singular values of our PSF matrix comparing with the singular values of signal x.

The smallest singular values were not very small. As a result, the condition number

was not very large, making the PSF a well conditioned matrix.
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Figure 18: Blurring matrix PSF and signal x singular value plot.

After applying the blurring operation by a well conditioned PSF, the Mean

square error between the original and reconstructed signal for our experiment was

5.3056 × 10−4, while the Peak Signal-to-Noise ratio resulted 80.88 dB. However,

we were still able to reconstruct back the signal after applying a significant amout

of random noise. For comparing results using MSE and PSNR, we have provided

plots for regularized least squares SVD filtering by choosing several regularizing

parameters.

We have used several other PSFs for our SVD deconvolution algorithm. In

[22], a blur that is spatially invariant is given by decomposing it into Kronecker

products. The Kronecker product, denoted as ⊗, is a matrix operator that maps
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two arbitrarily dimensioned matrices into a larger matrix that has a special block

structure. The Kronecker product of matrices A ∈ Rn×n and B ∈ Rn×n is given by

A⊗B =




a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
an1B an2B . . . annB




Using the SVD of A and B, we can obtain the Kronecker product factorization

of C, such that

C = (UA ⊗ UB)(ΣA ⊗ ΣB)(VA ⊗ VB)T .

The factorization P, which corresponds to our PSF matrix can be computed using

the SVD such that

P =

r∑

k=1

σkukv
T
k ,

where σ1 ≥ σ2 ≥ . . . ≥ σr > 0, and thus ak =
√
σkuk and bk =

√
σkvk. Using the

Kronecker product resulted with a large matrix of size n2×n2, because of all possible

products between elements of A and B. For a 256 × 256 input signal, maximum

variable size allowed to compute using the Kronecker product is exceeded. In our

least squares model, another way to allow a matrix multiplication in the convolution

step is to multiply both sides of input signal X by A, such that, B = AXAT . If

we let A = UΣV T , then UTAV = Σ, and the factorization using the fact that

B = AXAT can be written as

UTBU = (UTAV )V TXV (V TATU) = Σ(V TXV )Σ,

which implies that there is a solution X̂ provided that X̂ = V TXV , and X =

V X̂V T . Thus,

B̂ = ΣX̂Σ.

The soultion is given by

X̂i,j =
B̂i,j

σiσj

.
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Figure 19: SVD deconvolution using the matrix signal X and PSF P generated
using Kronecker products. The MSE between X and reconstructed signal X̂ is
0.0036, PSNR = 72.575.
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5. EVALUATION OF THE SVD COMPUTATION

5.1 Comparing Obtained Results

Using the SVD, we have shown how to compress the size of matrix A = UΣV T ,

such that the orthogonal matrices U and V are factored in the form

UTAV = Σ =

[
Σ1 O
O O

]
.

The matrix Σ1 is nonsingular diagonal matrix consisting of singular values σ1 ≥

σ2 ≥ . . . ≥ σr > 0. This validates that Σ1 is the reconstructed form of matrix A

and both are considered orthogonally equivalent. If A is a 256 gray scale image,

then the representation of each pixel of A requires one byte, that is, eight bits of

memory. In the orthogonal matrices V and U , every pixel of U and V needs more

than one byte. Although the SVD provides better result for image compression,

this full size SVD method is very costly [1]. The table below shows the compression

ratio and relative errors calculated for results in Figure 2.

PSNR, the ratio between the peak power of the true signal and the power of

the Gaussian noise, measures the amount of mathematical error introduced in an

image by compression or noise introduction. PSNR is related to the mean square

error (MSE). However, the PSNR is measured using logarithmic scale; in Figures

3 and 9, we have shown Matlab plots for the SVD compression and noise filtering

respectively. The peak signal-to-noise ratio (PSNR) and signal-to-noise ratio (SNR)

for the input m×n 256 gray scale image A and its reconstructed image x̂ are given

by the equations

PSNR = 10 log10(
255∑m

i=1

∑n
j=1[A(i, j) − x̂(i, j)]2

) = 10 log10(
255

||A− x̂||2F
)

and

SNR = 10 log10(

∑m
i=1

∑n
j=1A(i, j)2

∑m
i=1

∑n
j=1[A(i, j) − x̂(i, j)]2

) = 10 log10(
||A||2F

||A− x̂||2F
)
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Figure 20: Relative error (σk+1/σ1) and compression ratio for results in Figure 2.

The relative error decreases as the number of singular values being retained in-

crease. The best compression ratio with the corresponding minimum relative error

is given by retaining only 85 singular values. High compression ratio is needed for

best for best compression and reconstruction result. The best rank-k approximation

of matrix A representing the sample “Lena” image is minimizing ||A−Ak||2 = σk+1,

which is also the goal of minimizing relative error.

5.2 Condition Number and Numerical Rank of the SVD

In numerical linear algebra, we use the condition number and the numerical rank

to evaluate the numerical stability of our inverse problem. Low condition number

usually means that computation is well-conditioned or stable. When condition

number is high, the computation is ill-conditioned. A small perturbation on A

such that A+ δA will cause relatively large changes in the solutions to Ax = b (for

a given error level δ). The condition number with respect to the 2-norm is defined



48

by κ2(A) = σmax(A)/σmin(A). If we could measure the condition number of A, this

measure could be used to derive a bound for the relative error in the computed

solution.

In general, for matrix A ∈ Rm×n with rank k, it easily seen that k ≤ min{m,n}.

When k = min{m,n}, then matrix A has full rank. Otherwise, A is said to be rank

deficient. In our least square model Ax− b = η, if A is nearly rank deficient (σmin

is small), then the solution x is ill-conditioned and possibly very large. There have

been studies addressing the ill-conditioned situation of rank-deficient least squares

problem and how to solve them accurately. The system Ax = b can be changed

to a symmetric positive definite system, in which xTAx > 0 for all n × 1 vectors

and AT = A, by solving the normal equations ATAx = AT b. This includes the

least squares problem minx||Ax − b||2. Solving the equation Ax = b will lead to

slow convergence if A is ill-conditioned and since the condition number of ATA or

AAT is the square of the condition number of A. The goal was to compute the

minimum norm solution x that is possibly unique. The condition number of this

minimum norm solution is determined by the smallest nonzero singular value and

also the rank of A. The main difficulty is that the rank of the matrix changes

discontinuously as a function of the matrix. The number of nonzero singular values

of the blurring matrix A is 571, and its smallest singular value is σn = 5.81×10−51.

The condition number of the matrix is 1.62 × 1050.

Each computed singular value σ̂i satisfies |σ̂i−σi| ≤ O(ε)||A||2, where O(ε)||A||2

is magnitude of the perturbation of matrix A. The condition number can be

increased from 1/σ to 1/ε. With backward stability, the computed SVD will

be the exact SVD of a slightly different matrix: Â = Û Σ̂V̂ T = A + δA, with

||δA|| = O(ε)||A||. Computed singular values less than O(ε)||A||2 can be treated

as zero, because roundoff makes it distinguishable from zero [5]. This could raise

the smallest singular value from ε to 1 and correspondingly decrease the condition
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number from 1/ε to 1/σ = 1.
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0.8

Singular values of PSF matrix

Figure 21: Displaying zeros and singular values of a 256 × 256 well conditioned
blurring matrix A, with number of nonzero elements = 4280.

For a blurring matrix, all the singular values decay gradually to zero, while clus-

tering at zero, see Figure 21, [22]. As a result, the condition number κ(A) = σ1/σn

is very large. The minimum norm solution x is unique and may be well conditioned

if the smallest nonzero singular value is not too small.

5.3 Reguralization Technique and Dealing with the Inverse SVD

In numerical linear algebra the singular values can be used to determine the

effective rank of a matrix, as rounding error may lead to small but nonzero singular

values in a rank deficient matrix. Obtaining the singular value decomposition of

a large matrix, such as A, can be very computationally expensive. In our SVD

filtering model, we applied an inverse operation to reconstruct the corrupted image.
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Figure 22: Singular values of PSF matrix A decay gradually and cluster at zero.
The condition number of the PSF matrix is 7.975 × 1020.

Inverse filtering is usually considered an ill-conditioned problem. Regularization

techniques must be applied to stabilize the numerical methods.

Any regularization method tries to analyze a well-posed problem whose solution

approximates the solution of the original ill-posed problem. The smallest singular

value of our PSF matrix A is σn, which is shown to be very small. The solution x

is ill-conditioned and possibly very large. If x minimizes ||Ax − b||2, then ||x||2 ≥

|uT
nb|/σn, where un is the last column of matrix U . If we perturbing b, such that,

b + δb can change x to x + δx, where ||δx||2 is as large as ||δb||2/σn, see [5] for the

Proofs. If the reconstruction is given by x = A†b = V Σ†UT b, so ||x||2 = ||Σ†UT b||2.

To regularize a rank deficient least squares problem, where rank of A is less than n,

we will look for the unique solution of the smallest norm ||Ax − b||2 characterized
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by the proposition presented in [5]. We write the SVD of A as

A =
[
U1, U2

] [
Σ1 O
O O

] [
V1, V2

]T
= U1Σ1V

T
1 ,

where Σ1 is r× r and nonsingular, and U1 and V1 have r columns. If we let β = σn,

the smallest nonzero singular value of A, then

1. All solutions x can be written x = V1Σ
†
1U

T
1 b + V2z, where z is an arbitrary

vector.

2. The solution x has minimal norm ||x||2 precisely when z = 0, in which case

x = V1Σ
†
1U

T
1 b and ||x||2 ≤ ||b||2/β.

3. Changing b to b+δb can change the minimal norm solution x by at most ||δb||2/β.

The Proofs of this proposition are also given in [5], p.126.

There are several ideas required to achieve well-posedness or stable solution.

Some examples can be, imposing restriction of the data; changing the space or the

topology, or modification of the operator itself. For least square model b = Ax+ η,

the regularization method constructs the solution as

min
x

[u(a, b) + βv(a)],

where u(a, b) describes how the real image data is related to the degraded data. In

other words, this term models the characteristic of the imaging system; βv(a) is

the regularization term with the regularization operator v operating on the original

image x; and the regularization parameter β is used to tune up the weight of the

regularization term [20]. The spatial dependence or independence of the noise term

A can also help impose regularization on the model.

Figure 18 displays the PSNR and MSE plots after implementing least squares

SVD filtering (using the same data in Figure 12) by applying regularization and

adjusting the regularization term β (“epsilon in the plot”). As the regularization

term increases, we have seen a sharp rise in PSNR and a sharp decline for MSE

to a certain point. This means that the regularization term seems to minimize the
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Figure 23: Plots for the SVD inverse filtering with regularization. Results in Figure
12 display the SVD inverse filtering without regularization. Here, the same image
and PSF data were used to display PSNR and MSE plots for regularized inverse
SVD filtering.
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amplified error caused by division with small singular values upto a certain regu-

lazation point. We can apply regularization in the inverse SVD filtering obtained

in Figure 13, and Figure 12, and show a better reconstruction. We can see a better

reconstruction by visual inspection for Figure 13.

True Signal x blurring PSF matrix A

500 1000 1500

500

1000

1500

blurred signal with random noise reconstructed signal

Figure 24: The SVD inverse filtering using regularization δ = 0.1. PSNR = 86.73db
and MSE = 1.38 × 10−4.
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Figure 25: Inverse SVD filtering of the binary object x. The restored object by
regularization δ = 0.5, at the bottom right, gives a better result compared to the
reconstructed signal in Figure 13. PSNR = 89.54 and MSE = 7.23 × 10−5.
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Figure 26: The Figure shows SVD least squares filtering using the Kronecker prod-
ucts for the PSF matrix and regularization delta = 0.01.
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Figure 27: The Figure shows the overall PSNR and compression ratio plots for sev-
eral SVD blocks. The PSNR decreases as the block size increases. The compression
ratio using SVD blocks also decreases with an increase in block size.
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6. CONCLUSION

The SVD can be shown to improve the appearance of distorted or noised images

by implementing it in several filtering techniques. We have discussed the SVD block

denoising technique, where we divide a sample image matrix into square blocks and

calculate the SVD of each block to reduce the changes in singular values and singular

vectors. Filtering noise is performed through eliminating changes in singular values

and singular vectors that resulted from additive white Gaussian noise. Although,

denoising using the block operation resulted with high mean square error and low

peak signal-to-noise ratio, it has been shown to work well for compression. The

block SVD algorithm effectively compresses the image, while reducing computation

time.

The widely known SVD application to image compression is discussed. SVD

compression method allows us to reduce the size of the matrix representing the

image by taking only few singular values of it. This led to the compression of

images without losing image quality. The SVD compression is similar to the noise

filtering method with the notion that insignificant singular values can be avoided

to obtain a compressed or restored image. Compression using the SVD blocks was

much more efficient than SVD compression of the entire matrix.

We have also shown an implemented SVD method for deconvolving blurred

images by a given blur parameter PSF. We have modeled the filtering operation

using least squares and computed the solution that minimizes the norm of the least

square equation. Using this technique, an inverse operation is done as the blur

element enters the reconstructed image in the form of an inverted noise. In this

approach, we have shown how to damp the effects caused by division by the small

singular values. The SVD filtering in images can yield better results compared to

other methods of filtering, such as median and mean filtering techniques.
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The SVD computation is not recommended for large matrices and any algo-

rithms that address ill-posed problems. Because of large computation that results

from vectorizing input signal, SVD deconvolution is not a reliable approach for

noise filtering. We can avoid large computation by using Kronecker products pro-

vided by Hansen et. al. (2006) for our blurring matrix. Stability for the SVD least

squares solution was achieved by imposing certain regularity or modification of the

filter operator itself. After applying regularization using SVD deconvolution, we

were able to restore a corrupted signal with higher PSNR values.
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