725 research outputs found

    Observation and interpretation of motional sideband asymmetry in a quantum electro-mechanical device

    Get PDF
    Quantum electro-mechanical systems offer a unique opportunity to probe quantum noise properties in macroscopic devices, properties which ultimately stem from the Heisenberg Uncertainty Principle. A simple example of this is expected to occur in a microwave parametric transducer, where mechanical motion generates motional sidebands corresponding to the up and down frequency-conversion of microwave photons. Due to quantum vacuum noise, the rates of these processes are expected to be unequal. We measure this fundamental imbalance in a microwave transducer coupled to a radio-frequency mechanical mode, cooled near the ground state of motion. We also discuss the subtle origin of this imbalance: depending on the measurement scheme, the imbalance is most naturally attributed to the quantum fluctuations of either the mechanical mode or of the electromagnetic field

    Quantum squeezing of motion in a mechanical resonator

    Get PDF
    As a result of the quantum, wave-like nature of the physical world, a harmonic oscillator can never be completely at rest. Even in the quantum ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. In this work, using microwave frequency radiation pressure, we both prepare a micron-scale mechanical system in a state near the quantum ground state and then manipulate its thermal fluctuations to produce a stationary, quadrature-squeezed state. We deduce that the variance of one motional quadrature is 0.80 times the zero-point level, or 1 dB of sub-zero-point squeezing. This work is relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultra-sensitive sensing of force and motion

    X-ray spectral diagnostics of activity in massive stars

    Full text link
    X-rays give direct evidence of instabilities, time-variable structure, and shock heating in the winds of O stars. The observed broad X-ray emission lines provide information about the kinematics of shock-heated wind plasma, enabling us to test wind-shock models. And their shapes provide information about wind absorption, and thus about the wind mass-loss rates. Mass-loss rates determined from X-ray line profiles are not sensitive to density-squared clumping effects, and indicate mass-loss rate reductions of factors of 3 to 6 over traditional diagnostics that suffer from density-squared effects. Broad-band X-ray spectral energy distributions also provide mass-loss rate information via soft X-ray absorption signatures. In some cases, the degree of wind absorption is so high that the hardening of the X-ray SED can be quite significant. We discuss these results as applied to the early O stars zeta Pup (O4 If), 9 Sgr (O4 V((f))), and HD 93129A (O2 If*).Comment: To appear in the proceedings of IAU 272: Active OB Star

    Measuring the Relative Phase of the Energy Gap in a High-Temperature Superconductor with EELS

    Full text link
    A method of measuring the relative phase of the energy gap in a high-temperature superconductor is suggested for electron energy loss spectroscopy. Energy-resolved measurements of off-specular scattering should show a feature similar to the specular feature associated with the gap. Unlike the specular feature, which reflects an average of the gap over the (normal) Fermi surface, the energy loss of the off-specular feature depends on the superconducting energy gap at only two locations on the Fermi surface. The onset of the feature reflects the relative phase between these two points. This result is independent of surface characteristics. Such characteristics affect the {\it magnitude} of the off-specular feature, not its location or onset. The size of the feature is estimated for a simple surface model. Implications of specific measurements on Bi2Sr2CaCu2O8\rm Bi_2Sr_2CaCu_2O_8 are discussed

    The Cauchy problem for the 3-D Vlasov-Poisson system with point charges

    Full text link
    In this paper we establish global existence and uniqueness of the solution to the three-dimensional Vlasov-Poisson system in presence of point charges in case of repulsive interaction. The present analysis extends an analogeous two-dimensional result by Caprino and Marchioro [On the plasma-charge model, to appear in Kinetic and Related Models (2010)].Comment: 28 page

    Ground state properties and dynamics of the bilayer t-J model

    Full text link
    We present an exact diagonalization study of bilayer clusters of t-J model. Our results indicate a crossover between two markedly different regimes which occurs when the ratio J_perp/J between inter-layer and intra-layer exchange constants increases: for small J_perp/J the data suggest the development of 3D antiferromagnetic correlations without appreciable degradation of the intra-layer spin order and the d_(x2-y2) hole pairs within the planes persist. For larger values of J_perp/J local singlets along the inter-layer bonds dominate, leading to an almost complete suppression of the intra-layer spin correlation and the breaking of the intra-layer pairs. The ground state with two holes in this regime has s-like symmetry. The data suggest that the crossover may occur for values of J_perp/J as small as 0.2. We present data for static spin correlations, spin gap, and electron momentum distribution and spectral function of the `inter-layer RVB state' realized for large J_perp/J. The latter deviates from the single layer ground state, making it an implausible candidate for modelling high-temperature superconductors.Comment: Revtex-file, 6 PRB pages, figures appended as uu-encoded postscript. Hardcopies of figures (or the entire manuscript) can be obtained by e-mailing to: [email protected]
    • …
    corecore