326 research outputs found

    Microscopic measurement of photon echo formation in groups of individual excitonic transitions

    Get PDF
    The third-order polarization emitted from groups of individual localized excitonic transitions after pulsed optical excitation is measured. We observe the evolution of the nonlinear response from the case of a free polarization decay for a single transition, to that of a photon echo for many transitions. The echo is shown to arise from the mutual rephasing of the emission from individual transitions

    Femtosecond phase-resolved microscopy of plasmon dynamics in individual gold nanospheres

    Full text link
    The selective optical detection of individual metallic nanoparticles (NPs) with high spatial and temporal resolution is a challenging endeavour, yet is key to the understanding of their optical response and their exploitation in applications from miniaturised optoelectronics and sensors to medical diagnostics and therapeutics. However, only few reports on ultrafast pump-probe spectroscopy on single small metallic NPs are available to date. Here, we demonstrate a novel phase-sensitive four-wave mixing (FWM) microscopy in heterodyne detection to resolve for the first time the ultrafast changes of real and imaginary part of the dielectric function of single small (<40nm) spherical gold NPs. The results are quantitatively described via the transient electron temperature and density in gold considering both intraband and interband transitions at the surface plasmon resonance. This novel microscopy technique enables background-free detection of the complex susceptibility change even in highly scattering environments and can be readily applied to any metal nanostructure

    Polarization-resolved extinction and scattering cross-section of individual gold nanoparticles measured by wide-field microscopy on a large ensemble

    Get PDF
    We report a simple, rapid, and quantitative wide-field technique to measure the optical extinction σext\sigma_{\rm ext} and scattering σsca\sigma_{\rm sca} cross-section of single nanoparticles using wide-field microscopy enabling simultaneous acquisition of hundreds of nanoparticles for statistical analysis. As a proof of principle, we measured nominally spherical gold nanoparticles of 40\,nm and 100\,nm diameter and found mean values and standard deviations of σext\sigma_{\rm ext} and σsca\sigma_{\rm sca} consistent with previous literature. Switching from unpolarized to linearly polarized excitation, we measured σext\sigma_{\rm ext} as a function of the polarization direction, and used it to characterize the asphericity of the nanoparticles. The method can be implemented cost-effectively on any conventional wide-field microscope and is applicable to any nanoparticles

    Realistic heterointerfaces model for excitonic states in growth-interrupted quantum wells

    Full text link
    We present a model for the disorder of the heterointerfaces in GaAs quantum wells including long-range components like monolayer island formation induced by the surface diffusion during the epitaxial growth process. Taking into account both interfaces, a disorder potential for the exciton motion in the quantum well plane is derived. The excitonic optical properties are calculated using either a time-propagation of the excitonic polarization with a phenomenological dephasing, or a full exciton eigenstate model including microscopic radiative decay and phonon scattering rates. While the results of the two methods are generally similar, the eigenstate model does predict a distribution of dephasing rates and a somewhat modified spectral response. Comparing the results with measured absorption and resonant Rayleigh scattering in GaAs/AlAs quantum wells subjected to growth interrupts, their specific disorder parameters like correlation lengths and interface flatness are determined. We find that the long-range disorder in the two heterointerfaces is highly correlated, having rather similar average in-plane correlation lengths of about 60 and 90 nm. The distribution of dephasing rates observed in the experiment is in agreement with the results of the eigenstate model. Finally, we simulate highly spatially resolved optical experiments resolving individual exciton states in the deduced interface structure.Comment: To appear in Physical Review

    Comment on "normalization of quasinormal modes in leaky optical cavities and plasmonic resonators"

    Get PDF
    Recently, Kristensen, Ge and Hughes have compared [Phys. Rev. A 92, 053810 (2015)] three di�erent methods for normalization of quasinormal modes in open optical systems, and concluded that they all provide the same result. We show here that this conclusion is incorrect and illustrate that the normalization of [Opt. Lett. 37, 1649 (2012)] is divergent for any optical mode having a �nite quality factor, and that the Silver-M�uller radiation condition is not ful�lled for quasinormal modes

    Polariton states bound to defects in GaAs/AlAs planar microcavities

    Get PDF
    We report on polariton states bound to defects in planar GaAs/AlAs microcavities grown by molecular beam epitaxy. The defect types relevant for the spatial polariton dynamics in these structures are cross-hatch misfit dislocations, and point-like defects extended over several micrometers. We attribute the latter defects to Ga droplets emitted occasionally by the Ga cell during the growth. These defects, also known as oval defects, result in a dome-like local modulation of surface, which is translated into the cavity structure and leads to a lateral modulation of the cavity polariton energy of up to 15\,meV. The resulting spatially localized potential landscape for the in-plane polariton motion creates a series of bound states. These states were characterized by spectrally resolved transmission imaging in real and reciprocal space, and reveal the spatial potential created by the defects. Interestingly, the defect states exhibit long lifetimes in the 10ps range, which we attribute to a spatially smooth confinement potential

    Ultrafast exciton dephasing in PbS colloidal quantum dots

    Get PDF
    In this work, we have measured the ground state excitonic dephasing in PbS QDs of sizes from 3.7nm to 5.7nm diameter in the temperature range from 5K to 100K by transient degenerate four-wave mixing (FWM) using 100fs pulses. A combination of heterodyne and k-selection detection was implemented to increase sensitivity and enable 4 orders of magnitude dynamic range in the FWM field detection
    • …
    corecore