1,603 research outputs found
Forming the Dusty Ring in HR 4796A
We describe planetesimal accretion calculations for the dusty ring observed
in the nearby A0 star HR 4796A. Models with initial masses of 10-20 times the
minimum mass solar nebula produce a ring of width 7-15 AU and height 0.3-0.6 AU
at 70 AU in roughly 10 Myr. The ring has a radial optical depth of 1. These
results agree with limits derived from infrared images and from the excess
infrared luminosity.Comment: 6 pages, including 2 figures and 1 table; ApJ Letters, in pres
Power limits and a figure of merit for stimulated Brillouin scattering in the presence of third and fifth order loss
We derive a set of design guidelines and a figure of merit to aid the
engineering process of on-chip waveguides for strong Stimulated Brillouin
Scattering (SBS). To this end, we examine the impact of several types of loss
on the total amplification of the Stokes wave that can be achieved via SBS. We
account for linear loss and nonlinear loss of third order (two-photon
absorption, 2PA) and fifth order, most notably 2PA-induced free carrier
absorption (FCA). From this, we derive an upper bound for the output power of
continuous-wave Brillouin-lasers and show that the optimal operating conditions
and maximal realisable Stokes amplification of any given waveguide structure
are determined by a dimensionless parameter involving the
SBS-gain and all loss parameters. We provide simple expressions for optimal
pump power, waveguide length and realisable amplification and demonstrate their
utility in two example systems. Notably, we find that 2PA-induced FCA is a
serious limitation to SBS in silicon and germanium for wavelengths shorter than
2200nm and 3600nm, respectively. In contrast, three-photon absorption is of no
practical significance
Impact of nonlinear loss on Stimulated Brillouin Scattering
We study the impact of two-photon absorption (2PA) and fifth-order nonlinear
loss such as 2PA-induced free-carrier absorption in semiconductors on the
performance of Stimulated Brillouin Scattering devices. We formulate the
equations of motion including effective loss coefficients, whose explicit
expressions are provided for numerical evaluation in any waveguide geometry. We
find that 2PA results in a monotonic, algebraic relationship between
amplification, waveguide length and pump power, whereas fifth-order losses lead
to a non-monotonic relationship. We define a figure of merit for materials and
waveguide designs in the presence of fifth-order losses. From this, we
determine the optimal waveguide length for the case of 2PA alone and upper
bounds for the total Stokes amplification for the case of 2PA as well as
fifth-order losses. The analysis is performed analytically using a small-signal
approximation and is compared to numerical solutions of the full nonlinear
modal equations
The strength and timing of the mitochondrial bottleneck in salmon suggests a conserved mechanism in vertebrates
In most species mitochondrial DNA (mtDNA) is inherited maternally in an apparently clonal fashion, although how this is achieved remains uncertain. Population genetic studies show not only that individuals can harbor more than one type of mtDNA (heteroplasmy) but that heteroplasmy is common and widespread across a diversity of taxa. Females harboring a mixture of mtDNAs may transmit varying proportions of each mtDNA type (haplotype) to their offspring. However, mtDNA variants are also observed to segregate rapidly between generations despite the high mtDNA copy number in the oocyte, which suggests a genetic bottleneck acts during mtDNA transmission. Understanding the size and timing of this bottleneck is important for interpreting population genetic relationships and for predicting the inheritance of mtDNA based disease, but despite its importance the underlying mechanisms remain unclear. Empirical studies, restricted to mice, have shown that the mtDNA bottleneck could act either at embryogenesis, oogenesis or both. To investigate whether the size and timing of the mitochondrial bottleneck is conserved between distant vertebrates, we measured the genetic variance in mtDNA heteroplasmy at three developmental stages (female, ova and fry) in chinook salmon and applied a new mathematical model to estimate the number of segregating units (N(e)) of the mitochondrial bottleneck between each stage. Using these data we estimate values for mtDNA Ne of 88.3 for oogenesis, and 80.3 for embryogenesis. Our results confirm the presence of a mitochondrial bottleneck in fish, and show that segregation of mtDNA variation is effectively complete by the end of oogenesis. Considering the extensive differences in reproductive physiology between fish and mammals, our results suggest the mechanism underlying the mtDNA bottleneck is conserved in these distant vertebrates both in terms of it magnitude and timing. This finding may lead to improvements in our understanding of mitochondrial disorders and population interpretations using mtDNA data
Vertical Distribution of Aersols and Water Vapor Using CRISM Limb Observations
Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of C02 (or surface pressure) and H20 gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 run for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal available from aerosol scattering
CRISM Observations of Water Vapor and Carbon Monoxide
Near-infrared spectra returned by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM, [1]) on-board the Mars Reconnaissance Orbiter (MRO) contain the clear spectral signature of several atmospheric gases including carbon dioxide (CO2), water vapor (H2O), and carbon monoxide (CO). Here we describe the seasonal and spatial mapping of water vapor and carbon dioxide for one full Martian year using CRISM spectra
Decoding Rich Spatial Information with High Temporal Resolution
New research suggests that magnetoencephalography (MEG) contains rich spatial information for decoding neural states. Even small differences in the angle of neighbouring dipoles generate subtle, but statistically separable field patterns. This implies MEG (and electroencephalography: EEG) is ideal for decoding neural states with high-temporal resolution in the human brain
- …