30 research outputs found

    Animating physical phenomena with embedded surface meshes

    Get PDF
    Accurate computational representations of highly deformable surfaces are indispensable in the fields of computer animation, medical simulation, computer vision, digital modeling, and computational physics. The focus of this dissertation is on the animation of physics-based phenomena with highly detailed deformable surfaces represented by triangle meshes. We first present results from an algorithm that generates continuum mechanics animations with intricate surface features. This method combines a finite element method with a tetrahedral mesh generator and a high resolution surface mesh, and it is orders of magnitude more efficient than previous approaches. Next, we present an efficient solution for the challenging problem of computing topological changes in detailed dynamic surface meshes. We then introduce a new physics-inspired surface tracking algorithm that is capable of preserving arbitrarily thin features and reproducing realistic fine-scale topological changes like Rayleigh-Plateau instabilities. This physics-inspired surface tracking technique also opens the door for a unique coupling between surficial finite element methods and volumetric finite difference methods, in order to simulate liquid surface tension phenomena more efficiently than any previous method. Due to its dramatic increase in computational resolution and efficiency, this method yielded the first computer simulations of a fully developed crown splash with droplet pinch off.Ph.D.Committee Chair: Turk, Greg; Committee Member: Essa, Irfan; Committee Member: Liu, Karen; Committee Member: Mucha, Peter J.; Committee Member: Rossignac, Jare

    Double Bubbles Sans Toil and Trouble: Discrete Circulation-Preserving Vortex Sheets for Soap Films and Foams

    Get PDF
    © ACM, 2015. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Da, F., Batty, C., Wojtan, C., & Grinspun, E. (2015). Double Bubbles Sans Toil and Trouble: Discrete Circulation-Preserving Vortex Sheets for Soap Films and Foams. Acm Transactions on Graphics, 34(4), 149. https://doi.org/10.1145/2767003Simulating the delightful dynamics of soap films, bubbles, and foams has traditionally required the use of a fully three-dimensional many-phase Navier-Stokes solver, even though their visual appearance is completely dominated by the thin liquid surface. We depart from earlier work on soap bubbles and foams by noting that their dynamics are naturally described by a Lagrangian vortex sheet model in which circulation is the primary variable. This leads us to derive a novel circulation-preserving surface-only discretization of foam dynamics driven by surface tension on a non-manifold triangle mesh. We represent the surface using a mesh-based multimaterial surface tracker which supports complex bubble topology changes, and evolve the surface according to the ambient air flow induced by a scalar circulation field stored on the mesh. Surface tension forces give rise to a simple update rule for circulation, even at non-manifold Plateau borders, based on a discrete measure of signed scalar mean curvature. We further incorporate vertex constraints to enable the interaction of soap films with wires. The result is a method that is at once simple, robust, and efficient, yet able to capture an array of soap films behaviors including foam rearrangement, catenoid collapse, blowing bubbles, and double bubbles being pulled apart.This work was supported in part by the NSF (Grant IIS-1319483),ERC (Grant ERC-2014-StG-638176), NSERC (Grant RGPIN-04360-2014), Adobe, and Intel

    Surface-Only Liquids

    Get PDF
    © ACM, 2016. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Da, F., Hahn, D., Batty, C., Wojtan, C., & Grinspun, E. (2016). Surface-Only Liquids. Acm Transactions on Graphics, 35(4), 78. https://doi.org/10.1145/2897824.2925899We propose a novel surface-only technique for simulating incompressible, inviscid and uniform-density liquids with surface tension in three dimensions. The liquid surface is captured by a triangle mesh on which a Lagrangian velocity field is stored. Because advection of the velocity field may violate the incompressibility condition, we devise an orthogonal projection technique to remove the divergence while requiring the evaluation of only two boundary integrals. The forces of surface tension, gravity, and solid contact are all treated by a boundary element solve, allowing us to perform detailed simulations of a wide range of liquid phenomena, including waterbells, droplet and jet collisions, fluid chains, and crown splashes.European Research Council, National Science Foundation, Natural Sciences and Engineering Research Council of Canad

    Water wave packets

    Get PDF
    This paper presents a method for simulating water surface waves as a displacement field on a 2D domain. Our method relies on Lagrangian particles that carry packets of water wave energy; each packet carries information about an entire group of wave trains, as opposed to only a single wave crest. Our approach is unconditionally stable and can simulate high resolution geometric details. This approach also presents a straightforward interface for artistic control, because it is essentially a particle system with intuitive parameters like wavelength and amplitude. Our implementation parallelizes well and runs in real time for moderately challenging scenarios

    Space-time sculpting of liquid animation

    Get PDF
    International audienceWe propose an interactive sculpting system for seamlessly editing pre-computed animations of liquid, without the need for any re-simulation. The input is a sequence of meshes without correspondences representing the liquid surface over time. Our method enables the efficient selection of consistent space-time parts of this animation, such as moving waves or droplets, which we call space-time features. Once selected, a feature can be copied, edited, or duplicated and then pasted back anywhere in space and time in the same or in another liquid animation sequence. Our method circumvents tedious user interactions by automatically computing the spatial and temporal ranges of the selected feature. We also provide space-time shape editing tools for non-uniform scaling, rotation, trajectory changes, and temporal editing to locally speed up or slow down motion. Using our tools, the user can edit and progressively refine any input simulation result, possibly using a library of pre-computed space-time features extracted from other animations. In contrast to the trial-and-error loop usually required to edit animation results through the tuning of indirect simulation parameters, our method gives the user full control over the edited space-time behaviors

    Coupling 3D Liquid Simulation with 2D Wave Propagation for Large Scale Water Surface Animation Using the Equivalent Sources Method

    No full text
    International audienceThis paper proposes a method for simulating liquids in large bodies of water by coupling together a water surface wave simulator with a 3D Navier-Stokes simulator. The surface wave simulation uses the equivalent sources method (ESM) to efficiently animate large bodies of water with precisely controllable wave propagation behavior. The 3D liquid simulator animates complex non-linear fluid behaviors like splashes and breaking waves using off-the-shelf simulators using FLIP or the level set method with semi-Lagrangian advection.We combine the two approaches by using the 3D solver to animate localized non-linear behaviors, and the 2D wave solver to animate larger regions with linear surface physics. We use the surface motion from the 3D solver as boundary conditions for 2D surface wave simulator, and we use the velocity and surface heights from the 2D surface wave simulator as boundary conditions for the 3D fluid simulation. We also introduce a novel technique for removing visual artifacts caused by numerical errors in 3D fluid solvers: we use experimental data to estimate the artificial dispersion caused by the 3D solver and we then carefully tune the wave speeds of the 2D solver to match it, effectively eliminating any differences in wave behavior across the boundary. To the best of our knowledge, this is the first time such a empirically driven error compensation approach has been used to remove coupling errors from a physics simulator.Our coupled simulation approach leverages the strengths of each simulation technique, animating large environments with seamless transitions between 2D and 3D physics

    Fast viscoelastic behavior with thin features

    No full text
    We introduce a method for efficiently animating a wide range of deformable materials. We combine a high resolution surface mesh with a tetrahedral finite element simulator that makes use of frequent re-meshing. This combination allows for fast and detailed simulations of complex elastic and plastic behavior. We significantly expand the range of physical parameters that can be simulated with a single technique, and the results are free from common artifacts such as volume-loss, smoothing, popping, and the absence of thin features like strands and sheets. Our decision to couple a high resolution surface with low-resolution physics leads to efficient simulation and detailed surface features, and our approach to creating the tetrahedral mesh leads to an order-of-magnitude speedup over previous techniques in the time spent re-meshing. We compute masses, collisions, and surface tension forces on the scale of the fine mesh, which helps avoid visual artifacts due to the differing mesh resolutions. The result is a method that can simulate a large array of different material behaviors with high resolution features in a short amount of time

    Hybrid smoothed particle hydrodynamics

    No full text
    We present a new algorithm for enforcing incompressibility for Smoothed Particle Hydrodynamics (SPH) by preserving uniform density across the domain. We propose a hybrid method that uses a Poisson solve on a coarse grid to enforce a divergence free velocity field, followed by a local density correction of the particles. This avoids typical grid artifacts and maintains the Lagrangian nature of SPH by directly transferring pressures onto particles. Our method can be easily integrated with existing SPH techniques such as the incompressible PCISPH method as well as weakly compressible SPH by adding an additional force term. We show that this hybrid method accelerates convergence towards uniform density and permits a significantly larger time step compared to earlier approaches while producing similar results. We demonstrate our approach in a variety of scenarios with significant pressure gradients such as splashing liquids

    Deforming Meshes that Split and Merge

    No full text
    Figure 1: Dropping viscoelastic balls in an Eulerian fluid simulation. Invisible geometry is quickly deleted, while the visible surfaces retain their details even after translating through the air and splashing on the ground. We present a method for accurately tracking the moving surface of deformable materials in a manner that gracefully handles topological changes. We employ a Lagrangian surface tracking method, and we use a triangle mesh for our surface representation so that fine features can be retained. We make topological changes to the mesh by first identifying merging or splitting events at a particular grid resolution, and then locally creating new pieces of the mesh in the affected cells using a standard isosurface creation method. We stitch the new, topologically simplified portion of the mesh to the rest of the mesh at the cell boundaries. Our method detects and treats topological events with an emphasis on the preservation of detailed features, while simultaneously simplifying those portions of the material that are not visible. Our surface tracker is not tied to a particular method for simulating deformable materials. In particular, we show results from two significantly different simulators: a Lagrangian FEM simulator with tetrahedral elements, and an Eulerian grid-based fluid simulator. Although our surface tracking method is generic, it is particularly well-suited for simulations that exhibit fine surface details and numerous topological events. Highlights of our results include merging of viscoplastic materials with complex geometry, a taffy-pulling animation with many fold and merge events, and stretching and slicing of stiff plastic material
    corecore