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Figure 1: Reproduction of various patterns resulting from the collision of jets. (A) Fluid chains. (B) Disintegrating sheets. (C) Violent flapping.

Abstract

We propose a novel surface-only technique for simulating incom-
pressible, inviscid and uniform-density liquids with surface tension
in three dimensions. The liquid surface is captured by a triangle
mesh on which a Lagrangian velocity field is stored. Because advec-
tion of the velocity field may violate the incompressibility condition,
we devise an orthogonal projection technique to remove the diver-
gence while requiring the evaluation of only two boundary integrals.
The forces of surface tension, gravity, and solid contact are all treated
by a boundary element solve, allowing us to perform detailed simu-
lations of a wide range of liquid phenomena, including waterbells,
droplet and jet collisions, fluid chains, and crown splashes.

Keywords: liquids, surface tension, boundary element method,
Helmholtz decomposition

Concepts: •Computing methodologies → Physical simulation;
Continuous simulation;

1 Introduction

Many fascinating liquid phenomena, such as the crown splash adored
by artists and scientists alike and the fluid chains formed by colliding
jets [Bush and Hasha 2004], are driven by subtle balances between
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the surface tension force and the inertia of the liquid. The deform-
ing free surface, a defining aspect of liquids, carries the geometric
information that drives surface tension effects, which are in turn re-
sponsible for the characteristic look and feel of familiar liquids like
water. Undoubtedly, capturing the free surface with sufficient detail
is crucial to the successful re-creation of these liquid phenomena
in computer simulations. From a computer graphics viewpoint, the
free surface is also the only visually important element of the final
imagery, as it is where the most prominent optical effects such as
reflection and refraction happen.

However, traditional fluid simulation techniques, including spatial
grids [Foster and Fedkiw 2001], volumetric meshes [Misztal et al.
2010], and particles [Ihmsen et al. 2014b], invest many of their de-
grees of freedom deep inside the liquid and far from the free surface.
Populating the entire volume of the liquid is clearly uneconomi-
cal, and as we will demonstrate, it is also unnecessary for many
phenomena of interest. In a traditional free surface flow solver, volu-
metric samples serve two roles: (a) to represent an arbitrary velocity
field inside the liquid volume, and (b) to enforce incompressibility.
Recent numerical experiments suggest that internal vorticity plays
only a small role in the perceived dynamics of liquids [Zhang et al.
2015], motivating us to disregard the first role of volumetric samples.
But what about incompressibility? Discarding internal samples and
working with variables only on the liquid surface, incompressibil-
ity can be enforced by projecting the velocity or position of the
surface [Zhang et al. 2012], or by working with a surface velocity
representation that is, by construction, incompressible [Brochu et al.
2012; Keeler and Bridson 2014]. Motivated by these observations,
we propose the first surface-based treatment of general 3D liquid
bodies dominated by surface tension and inertia.

The first challenge in a surface-only numerical scheme is finding
a sufficiently expressive velocity field representation that can be
stored on the surface. Capturing an arbitrary three dimensional
velocity field with a surface-only representation is an inherently
ill-posed problem. Fortunately, many liquid animation scenarios are
well approximated by a reduced space of harmonic velocity fields
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induced by two simplifying assumptions.

First, liquids are typically assumed to be incompressible, which
reduces the space of velocity fields to those that are divergence-free.

Second, the three primary sources of vorticity in typical flows of
interest are baroclinity due to density gradients, surface tension due
to curvature gradients, and interaction with solid boundaries due
to viscosity. However, for a liquid with uniform internal density,
density gradients and surface tension forces occur only at the liquid-
air surface. Furthermore, for the idealized case of inviscid flow
described by the Euler equations, viscosity is absent and as a result
vorticity generated at the solid or air surfaces does not propagate
into the interior [Stock 2006]. This motivates the assumption that
the interior of the liquid volume is irrotational, reducing the space
of velocity fields to those that are curl-free.

Our work builds on these two assumptions. We develop a surface-
based numerical treatment of volumetric liquids, inspired by the
representations that become possible when an internal velocity field
is assumed to be divergence- and curl-free. For a contractible do-
main, such as a liquid droplet, the harmonic vector field can be
expressed as the gradient of a harmonic scalar function. When this
integrability condition holds, it becomes possible to express the
volumetric velocity field, and in turn to integrate the Euler equa-
tions, in terms of only surface position and velocity. Even when
we consider scenarios beyond the scope of the integrability condi-
tion, the surface-based representation continues to produce visually
compelling animations reproducing fascinating liquid behavior (see
Figure 1).

This lower dimensional subspace of vector fields has previously been
shown to possess a surprising degree of expressive power through
successful applications to a variety of phenomena ranging from
droplet impact [Davidson 2000] and smoke [Brochu et al. 2012;
Weißmann and Pinkall 2010], to soap films [Da et al. 2015] and
ocean waves [Xue et al. 2001; Keeler and Bridson 2014]. Unfor-
tunately, existing surface-only techniques are not suited to reliable
simulation of many common liquid phenomena, such as splashing
and water jets. Vortex methods have difficulty treating baroclin-
ity robustly (the Boussinesq approximation is not applicable to the
liquid-air interface), while potential flow approaches suffer from
stability issues due to the nonlinearity of the Bernoulli equation.
For most liquid phenomena, a full 3D simulation (grid-based, volu-
metric mesh-based, or particle-based) is currently the only feasible
approach.

We propose a novel framework that is exempt from these pitfalls, for
robust and flexible simulation of incompressible liquid of uniform
density, with surface tension, gravity, and contact with solid ob-
jects. By making velocity the simulation state variable, we avoid the
destabilizing effect of nonlinear time integration: the nonlinearity
in the advective term of the Euler equations is easily handled on a
Lagrangian mesh in the form of the total derivative.

Working directly with velocity in a surface-only setting requires a
new set of tools. We present the first advection-projection scheme for
surface-based liquids, which proceeds in three steps: a Lagrangian
mesh advection phase; a surface-only projection phase based on the
Helmholtz decomposition that requires only the evaluation of two
boundary integrals; and a final boundary element solve to integrate
forces such as surface tension, gravity, and solid contact.

The use of an explicit triangle mesh for surface tracking allows for
easy and accurate surface tension force computation, which is espe-
cially crucial at the three-phase junction where the solid, liquid, and
air phases meet. We solve for the pressure and its normal derivative
on the surface using a first-order boundary element method (BEM)
solver, where the surface tension force and the solid contact force

are conveniently described by Dirichlet and Neumann boundary con-
ditions, respectively. The resulting numerical scheme successfully
reproduces a host of surface tension-dominated liquid phenomena
(see Figure 2 for an example).

Figure 2: Comparison of the evolution of droplets in an off-center
coalescence test between our method (A) and an unstructured tetra-
hedral mesh method (B) [Quan et al. 2009].

2 Related Work

Free surface flow simulation has been a central topic in the broader
literature of computational fluid dynamics since the field’s inception.
Characterized by a free surface separating a liquid region from
an exterior air region assumed to be massless, it presents various
challenges in interface tracking, discretization of the governing
physical equations, and treatment of liquid-solid-air interaction.

Grid and volumetric meshes The dominant approach to liquid
simulation discretizes the space in and around the liquid into a grid,
and stores on it the velocity field of the fluid [Foster and Metaxas
1996; Foster and Fedkiw 2001]. The surface evolution is tracked
using one of a range of techniques, such as the popular level set
method [Osher and Sethian 1988; Enright et al. 2002]. Alternative
discretizations include conforming volumetric meshes [Chentanez
et al. 2007; Misztal et al. 2010; Clausen et al. 2013], embedded
volumetric meshes [Batty et al. 2010], and particle methods [Ihmsen
et al. 2014b]. The spatial discretization of the liquid volume is
subsequently used to approximate and solve the incompressible
Euler or Navier-Stokes equations.

These approaches suffer from memory and computational costs
proportional to the volume of the simulation domain due to the
discretization of the liquid interior. Furthermore, conforming volu-
metric mesh methods such as that of Clausen et al. [2013] spend a
significant fraction of their computation time maintaining the quality
of the mesh interior, while grid-based methods require more complex
construction of differential operators to treat surface tension [Fedkiw
et al. 1999; Hong and Kim 2005] and triple junctions [Wang et al.
2005] in the absence of a conforming mesh.

Mesh-based surface tracking for Eulerian fluids In contrast to
level set- or particle-based approaches for representing liquid geom-
etry, explicit surface meshes [Wojtan et al. 2011] store geometric
information strictly on the surface and are gaining attention due to



their ability to preserve surface details and volume. Their explicit
geometry can be beneficial when coupled to an underlying volumet-
ric discretization of the fluid dynamics, such as for the discretization
of surface tension. Thürey et al. [2010] achieve a remarkable level
of detail by combining a high resolution surface mesh for surface
tracking and local wave simulation with a low resolution grid for
coarse-scale motion and incompressibility. Brochu et al. [2010]
also employ a surface mesh, using it to guide the placement of ad-
ditional pressure samples in a Voronoi mesh. Bojsen-Hansen and
Wojtan [2013] introduce a surface tracking error measure which
compares the normal from the mesh to the pressure gradient from
the grid, enabling the use of meshes with much higher resolution
than the grid. These works and others that utilize surface meshes,
such as those by Schroeder et al. [2012] and Pfaff et al. [2012], all
rely on a background grid to carry out the pressure solve. While they
benefit from a higher resolution or the more straightforward surface
description afforded by the explicit surface mesh, the physical de-
grees of freedom still reside on the grid and a discretization of the
volume remains necessary.

Vortex sheets While both grid- and mesh-based volumetric dis-
cretizations grow cubically in complexity when refined, surface
meshes grow quadratically. Some researchers have therefore aban-
doned the background grid altogether and sought to formulate the
necessary dynamics entirely on the surface. Brochu et al. [2012]
advocate a philosophy of “as much as one sees, that much one
should compute,” achieving linear time complexity for smoke by
using vortex sheets represented by an explicit surface mesh. Da et
al. [2015] propose a circulation-preserving surface tension model for
soap films also based on vortex sheets. The strength of vortex sheets
lies in the Biot-Savart integral which recovers the full 3D velocity
field from a surface-only representation; however, baroclinity, which
is key to modeling the effects of gravity, is difficult to treat near
strong density gradients. Brochu et al. [2012] adopt the Boussi-
nesq approximation, applicable only when the density difference
across the surface is small (Atwood ratio approaches 0), while Da
et al. [2015] do not consider baroclinity. Neither method is suitable
for the simulation of sharp liquid-air interfaces in free surface flow
where the density ratio is near-infinite (Atwood ratio approaches 1).

Potential flow The simulation of liquid using potential flow for-
mulations has been explored for various phenomena such as droplet
impact [Davidson 2000] and ocean waves [Xue et al. 2001; Keeler
and Bridson 2014]. By assuming the velocity field is a gradient
field and thus irrotational in addition to incompressible, the velocity
field can be compactly encoded by the scalar potential function on
the surface whose evolution is governed by the Bernoulli equation.
Unfortunately, the nonlinear term in the Bernoulli equation [David-
son 2000] destabilizes the time integration. Xue et al. [2001] rely
on smoothing to suppress the instability, while Keeler and Brid-
son [2014] linearize the Bernoulli equation, sacrificing interesting
motions such as breaking waves in return for stability. For the phe-
nomena we consider, both a severe lack of stability and a loss of
motion modes are undesirable.

Other non-volumetric techniques Several additional techniques
have been proposed to simulate liquid phenomena without paying
the price of volumetric discretization. Brochu [2006] proposes
an incompressibility enforcement technique based on a harmonic
partition of the liquid domain. Zhang et al. [2012] efficiently process
the motion of a surface mesh using a collection of deformation
operators, including a mean curvature flow operator to approximate
surface tension. In these works, the masses associated to the surface
degrees of freedom only approximately reflect how much of the
underlying liquid volume it influences. Batty et al. [2012] and Zhu

Method Setting BI BEM
[Zhang et al. 2012] Droplets
[Brochu et al. 2012] Smoke X
[Keeler and Bridson 2014] Waves X X
[Da et al. 2015] Bubbles X
Current 3D Liquid X X

Table 1: A summary of related surface-based fluid methods. BI
indicates boundary integrals; BEM indicates the boundary element
method.

et al. [2014] also utilize triangle meshes, but only to capture thin
sheet-like structures, not as a representation of the surface of a liquid
volume. For bulk bodies of liquid that are not thin in any direction,
Zhu et al. [2014] use a volumetric mesh, effectively reverting to a
conforming tetrahedral method.

Boundary integrals and the boundary element method The
boundary element method (BEM) has proven to be a powerful tech-
nique for a variety of phenomena including elasticity [James and Pai
1999] and brittle fracture [Zhu et al. 2015; Hahn and Wojtan 2015],
as well as the potential flow schemes above. We refer the interested
readers to Sauter and Schwab [2011] for more details on the theory
of boundary integrals and the boundary element method.

Despite the success of BEM in elasticity and fracture simulation,
applying BEM to the Navier-Stokes equations results in an inte-
gral equation containing a domain integral [Ladyzhenskaya 1963],
corresponding to the nonlinear convective term. One proposed treat-
ment is the Dual Reciprocity Method (DRM) [Power and Partridge
1994; Florez and Power 2001], which essentially approximates this
term using a collection of radial basis functions. However, several
issues of DRM have prevented it from gaining widespread popu-
larity, including lack of convergence [Florez and Power 2001] and
ill-conditioned systems [Chen et al. 2003].

We summarize the relationships among the surface-based fluid ani-
mation methods most relevant to the current work in Table 1. Note
that the vortex sheets method is considered a boundary integral
method, as is evident from the Biot-Savart integral.

3 Time Integration

Our model of a 3D liquid volume represents the state—position and
velocity—only on the liquid boundary surface. We do not explicitly
represent state in the interior.

Throughout our method, we adopt the following assumption (which
will be referenced as [HVF] in the following text whenever the
derivation invokes it):

DEFINITION 3.1 The Harmonic Velocity Field assumption (HVF):
A velocity field u : R3 → R3 fulfills the HVF assumption if:

• ∇ · u = 0,

• ∇ × u = 0,

i.e., it corresponds to a flow that is both incompressible and irrota-
tional.

We integrate forward in time by operating directly on the bound-
ary surface, storing and updating the position and velocity of the
surface. We employ operator-splitting [Stam 1999] to solve the
incompressible Euler equations over the liquid domain Ω:

Du

Dt
= −1

ρ
∇p+

1

ρ
F, (1)

∇ · u = 0. (2)
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Figure 3: Overview of a time step. The inset text summarizes the properties on various velocity components.

We implement this scheme in three steps (Figure 3): advection,
projection, and integration of external forces (gravity, surface tension
and solid contact). The advection step moves the position of the
boundary surface and updates the velocity field absent internal and
external forces ( Du

Dt
= 0). Next, the projection step removes any

velocity divergence, ∂u
∂t

= − 1
ρ
∇p, introduced by advection. Finally,

we integrate the effect of external forces into the velocity field while
respecting the solid boundary and incompressibility constraints,
∂u
∂t

= 1
ρ
F. We describe each step in detail in the sections below.

3.1 Advection

At the start of time integration, we are given the position of the
surface, decorated with a harmonic velocity field. In our Lagrangian
approach, advection requires only to update the position of the
surface; the velocity associated to each surface point is unaltered.
Although the initial velocity field was divergence-free [HVF], the
change in surface position can introduce velocity divergence.

3.2 Projection

Next, we remove the divergence, projecting back to the space of har-
monic velocity fields. We first describe Helmholtz-based projection
for a volumetric velocity field, and then present the transformation
to the surface-based representation.

Helmholtz decomposition As depicted in Figure 3, we denote by
u− the harmonic 3D velocity field before advection, u the (generally
divergent) velocity field after passively moving the velocity field
with the liquid, and u the (incompressible) post-advection, post-
projection velocity field.

We can think of divergence as inducing a pressure, p, in a projec-
tion that brings u back into the linear subspace of incompressible
velocity fields to obtain u. In other words, we can find u by the
orthogonality condition u ⊥ (u− u) and the incompressibility con-
dition∇ · u = 0. For continuous vector fields in R3 over the liquid
domain Ω, orthogonality v ⊥ w is defined through the vanishing of
the inner product 〈v,w〉Ω =

∫
Ω
v ·wdV .

Unlike most previous approaches [Batty et al. 2007; Clausen et al.
2013; Misztal et al. 2010; Ihmsen et al. 2014a], which use a Poisson
solve to perform the projection, we adopt a constructive Helmholtz
decomposition [Phillips 1933] on u,

u =−∇Φ +∇×A (3)

=

harmonic

∇×AΓ −∇ΦΓ

=

u

+

curl-free
∇ΦΩ

=

u− u

−
div-free

����∇×AΩ ,
(since∇× u = 0)

(4)

Component Divergence-free Curl-free Zero
u− X X
u X
u X X
u+ X X
∇ΦΓ X X
∇ΦΩ X
∇Φ X
∇×AΓ X X
∇×AΩ X X X
∇×A X X

Table 2: A summary of various velocity components.

where the scalar potential is Φ(x) =∫
Γ

n(y) · u(y)G(x,y)dSy︸ ︷︷ ︸
ΦΓ

−
∫

Ω

∇y · u(y)G(x,y)dVy︸ ︷︷ ︸
ΦΩ

, (5)

and the vector potential is A(x) =∫
Γ

n(y)× u(y)G(x,y)dSy︸ ︷︷ ︸
AΓ

−
∫

Ω

∇y × u(y)G(x,y)dVy︸ ︷︷ ︸
AΩ=0

. (6)

Here Γ = ∂Ω is the liquid surface, n is the outward unit surface
normal, and G(x,y) = − 1

4π‖x−y‖ is the free space Green’s func-
tion of Laplace’s equation. These formulas can be proven using the
property of the Green’s function∇2G = δD , where δD is the Dirac
delta. In the literature, boundary integrals in the form of ΦΓ or AΓ

are known as single layer potentials [Sauter and Schwab 2011].

Equation 4 decomposes u into three orthogonal subspaces (see
Appendix): (a) harmonic (simultaneously div- and curl-free); (b)
divergent but curl-free; (c) rotational but div-free. Since by assump-
tion u is irrotational, the third term∇×AΩ vanishes. Any divergent
component of u must be in∇ΦΩ. These properties on the various
velocity components are summarized in Table 2. If we equate u to
the harmonic first component, then the divergent second component
is u− u. We have identified the solution to the simultaneous condi-
tions ∇ · u = 0, from (a), and u ⊥ (u− u), by the orthogonality
of the subspaces.

In summary, we can construct the divergence-free velocity, u, using
only the boundary integrals ΦΓ and AΓ. Note that the Green’s func-
tion,G(x,y), tends to infinity as the evaluation point, x, approaches
the source point, y. The resulting singularities in the integrals re-
quire special treatment, which we describe in Section 4.

Surface-only representation Assume that the liquid domain Ω
is contractible. By the Poincaré lemma, a curl-free vector field
u over a contractible domain Ω can be always be represented as



the gradient u = ∇φ of a scalar potential field, φ. If u is also
divergence-free, 0 = ∇·u = ∇·∇φ, then φ is harmonic, satisfying
Laplace’s equation∇2φ = 0.

Since our velocity field is harmonic, i.e., curl- and divergence-free
[HVF], it can be exactly represented by the gradient of a harmonic
potential.

Taking the boundary restriction of the velocity field yields a volume-
conserving surface velocity field, whose normal component n̂ · u
equals the normal derivative (n̂ · ∇)φ of the harmonic potential by
construction. Therefore, we have a specific instance of Laplace’s
equation, a boundary value problem (BVP), which can be solved
to recover φ over Ω, using the surface velocity as the Neumann
boundary condition. The gradient∇φ of the solution is unique.

If any two harmonic velocity fields have the same normal compo-
nent in their boundary restriction, then they will both establish the
same boundary data for the BVP, and both yield the same gradient
∇φ. Therefore, two harmonic velocity fields with the same normal
component in their boundary restriction must be the same field. In
other words, for a contractible domain, a (3D) harmonic velocity
field can be fully described by the normal component of its boundary
restriction.

On a non-contractible domain, e.g., in 3D, for a genus k 6= 0 liquid
body, the normal component of the boundary restriction of a har-
monic velocity field still forms a compatible Neumann boundary
condition, and the gradient of the BVP’s solution is still unique.
Furthermore, the velocity field obtained from the BVP is still har-
monic by construction. However, the Poincaré lemma no longer
holds on such a domain: there exists an “extra” finite-dimensional
vector space of harmonic vector fields that cannot be expressed

as gradients of continuous potentials.
These correspond to a flow circulat-
ing around a finite number of non-
contractible loops, e.g., around the
handle of the solid donut (see incident
figure). The analysis in our approach
simply ignores these “extra” modes.

Surface-only projection We are now ready to see that the
Helmholtz projection can be directly computed on the surface repre-
sentation, taking as input and producing as output only surface data.
Equation 4 allows us to evaluate the post-projection velocity

u = ∇×AΓ −∇ΦΓ (7)

at any location in Ω using only the surface velocity field on Γ,
since both ΦΓ and AΓ are boundary integrals. The resulting u is
a harmonic velocity field. Therefore, the boundary restriction of
(4) allows us to operate directly on surface velocity fields, without
representing the interior velocity field. Henceforth, we denote the
boundary restriction of u, u, etc. by the same symbols.

Tangential velocity Although (7) already gives us the post-
projection velocity, we can simplify it further. For the scenarios
we consider, air density is negligible compared to liquid density.
Imagine that the pressure gradient∇p has a tangential component:
it would effect an infinite tangential air velocity, in turn instantly
restoring equilibrium. This argument leads to the familiar free-
surface condition p = 0, from which it follows that the pressure
gradient in (1) is always normal to the surface Γ. We therefore
resolve (7) using only the normal component of u, denoted un,
while copying the tangential component directly from u using the

tangential projection operator P = I − nnT :

u = Pu + unn, (8)
un = n · (∇×AΓ −∇ΦΓ) . (9)

Apart from being more efficient, the main advantage of using the
Helmholtz decomposition only for the normal component, un, is
that it simplifies the treatment of the∇×AΓ-term in (17)–(19).

3.3 External force integration

In the final stage of time integration, we consider external forces F.
The input to this final stage is the post-projection harmonic velocity
field, and the output is the end of time step harmonic velocity field
[HVF]. In particular, we emphasize that external forces are added in
such a way that the velocity field remains incompressible, in contrast
with typical volumetric approaches.

Unlike with volumetric discretizations such as a grid or a tetrahedral
mesh, in our surface-only representation the mass associated with
each degree of freedom cannot be easily computed; when a surface
vertex moves it is not immediately clear how much liquid volume
moves with it. We therefore circumvent the computation of the nodal
masses altogether.

By harmonicity [HVF], the velocity change induced by external
forces can be expressed as the gradient of a harmonic pressure
field pF. Therefore, given appropriate boundary conditions, we can
specify pF as the solution to Laplace’s equation.

We model external forces that act (a) normal to the boundary surface,
e.g., surface tension, free-slip solid contact, or (b) uniformly through-
out the liquid body, e.g., gravity. Both of these categories allow for
straightforward modeling of boundary conditions for Laplace’s equa-
tion.

The boundary consists of the liquid-air interface ΓA and the liquid-
solid interface ΓS , satisfying ΓA ∪ ΓS = Γ. The surfaces ΓA
and ΓS intersect only along a curve T which we refer to as the
triple junction. Neglecting air pressure, the surface tension force
creates a Dirichlet boundary condition at the liquid-air interface.
The solid contact force and gravity body force, on the other hand,
create a Neumann boundary condition, i.e., a pressure derivative
that prevents interpenetration and separation. Consequently, we can
write a well-posed boundary value problem to find the pressure due
to external forces pF :

∇ · ∇pF = 0 , subject to (10)
pF = σH, on ΓA, (11)

∂pF
∂n

=
ρ

∆t
(u + g∆t− usolid) · n, on ΓS , (12)

where σ is the surface tension coefficient, H is the (signed) mean
curvature, and g is the gravitational acceleration. We explicitly
integrate acceleration due to gravity into the vertex velocities; the
constraint on the solid contact region ensures that these vertices
cannot move into the solid.

A vertex is considered to be in contact with the solid only if at least
one of its incident faces is in ΓS . When a droplet peels off a solid
surface, the contact area shrinks as the droplet moves away. Finally,
ΓS consists of only one triangle; once it gets too small, remeshing
turns this triangle into a single vertex. This last vertex is then not
constrained any further and can move away from the solid freely.

We solve this system using the Boundary Element Method [Sauter
and Schwab 2011], without the need to discretize the liquid volume.
The BEM solve yields pressure values and normal derivatives. The



resulting pressure gradient accelerates the input velocity field u to
the end-of-step velocity u+,

u+ = u− ∆t

ρ
∇pF. (13)

4 Spatial Discretization

Surface mesh To track the liquid domain boundary Γ, we em-
ploy the mesh-based surface tracking library Los Topos [Da et al.
2014], taking advantage of its gentle mesh-merging operation, ro-
bust collision resolution, and remeshing capabilities. However, in
principle any surface tracking technique that maintains a manifold
surface mesh can be used. Γ is represented as a triangle mesh (V, F )
consisting of vertices V and triangular faces F . Each connected
component of liquid volume is represented by a closed manifold
triangle mesh. We use V (i) and F (i) to denote the set of vertices
neighboring vertex i and the set of faces incident to vertex i, re-
spectively. The area of face i is denoted ai, while the vertex area
is defined as âi = 1

3

∑
j∈F (i) aj . We store a velocity vector ui

(the subscript distinguishes the discrete quantity ui from its contin-
uous counterpart u) on each vertex i ∈ V . A linear basis function
θi is used to interpolate the velocity at any point on the surface:
u =

∑
i∈V θiui.

We implement isotropic spatial adaptivity into the Los Topos library
by allowing different elements to have different minimum and maxi-
mum edge length bounds. Each vertex is endowed with a target edge
length, from which the its minimum and maximum edge lengths are
calculated. The remeshing code makes edge collapsing and splitting
decisions based on the smaller of the bounds on the two vertices of
the edge. Loosely inspired by Narain et al. [2012], we first determine
the vertex target edge lengths individually according to the local
curvature (as the largest deviation of the dihedral angles from π on
incident edges) and the local velocity variation (as the magnitude
of the velocity Laplacian). We then reduce the target edge lengths
where necessary, in order to ensure that the target edge lengths on
neighboring vertex do not differ by more than a constant factor (we
use 1.2 for all tests).

The stored surface velocity is linearly interpolated onto new vertices
during edge-split operations, and averaged onto the replacement
vertex during edge-collapse operations.

Vertex-neighborhood integration Using the piecewise-linear tri-
angle element greatly simplifies the geometric evolution of the sur-
face as compared to higher order representations, but makes evalua-
tion of boundary integrals tricky. For example, the normal derivative
n · ∇ΦΓ has a strongly singular kernel [Sauter and Schwab 2011]
and is not well defined at non-smooth points on the surface (such
as a vertex) even in the Cauchy principal value sense. Appropriate
measures must be taken to manage the order of singularity.

We discretize (9) by integrating it with the basis function θi, in a
style similar to the Galerkin BEM:

âiu
n
i =

∫
Γ

θiu
ndS =

∫
Γ

θi (n · ∇ ×AΓ − n · ∇ΦΓ) dS. (14)

The integrals can then be evaluated on each face individually, over
which the normal n is a constant:∫

Γ

θin · ∇ΦΓdS =
∑
j∈F (i)

∫
j

θin · ∇ΦΓdS, (15)

∫
Γ

θin · ∇ ×AΓdS =
∑
j∈F (i)

∫
j

θin · ∇ ×AΓdS. (16)

The right hand sides of (15) and (16) are double integrals, since
ΦΓ and AΓ are boundary integrals themselves. The inner integrals
diverge to infinity near vertex i in a weakly singular fashion, thus we
discretize the outer integral using a four-point Gaussian quadrature
with Duffy transform [Duffy 1982; Keeler and Bridson 2014]; this
analytically removes weak singularities.

Next, we describe the discretization of the inner integral. For the ΦΓ

term, the integrand in (15) requires evaluating n · ∇ΦΓ = ∂
∂n

ΦΓ =∫
n(y) · u(y) ∂

∂nx
G(x,y)dSy. Although it is divergent on ver-

tices as discussed above, the integral is not singular when evaluated
at a quadrature point in the interior of face j, because the kernel
∂
∂nx

G(x,y) evaluates to zero on face j. This means that within a
particular face, this face itself does not contribute to the value of
the integral. Therefore, this integral can be discretized by Gaussian
quadrature directly. In practice we find using only one quadrature
point per face sufficient.

The AΓ term in (16), on the other hand, is vector valued and needs
a different treatment. We first transform it via integration by parts:

∫
j

θin · ∇ ×AΓdS (17)

=

∫
j

n · ∇ × (θiAΓ)dS −
∫
j

n · (∇θi ×AΓ) dS (18)

=

∮
∂j

θiAΓ · tds−
∫
j

n · (∇θi ×AΓ) dS, (19)

i

j

Figure 4: The loop inte-
gral involving AΓ.

where ∂j is the boundary of tri-
angle j, and t is its unit tangent.
Since the integration by parts
moved the derivative from AΓ to
the shape function θi, the inner
integrals now have a weakly sin-
gular kernel instead of a strongly
singular one. For a given face
j ∈ F (j), the first term consists
of three line integrals, one along
each edge. The integrals along the two edges incident to vertex i
cancel with those from neighboring faces, while the integral along
the third edge is zero because θi vanishes there (Figure 4). Therefore,
the first term can be dropped, resulting in:

∫
j

θin · ∇ ×AΓdS = −
∫
j

n · (∇θi ×AΓ) dS. (20)

As with the preceding weakly singular integrals, this too can be
discretized directly by a four-point Gaussian quadrature with Duffy
transform. Consequently, we now have all the required tools to
evaluate the normal component of the velocity field in (14).

Eliminating numerical smoothing The Galerkin-style outer in-
tegral (14) is employed to suppress the singularity, but at the same
time it introduces a smoothing of the velocity field which can damp
the motion significantly at low mesh resolutions. Fortunately, as we
show below, the negative effects of this numerical dissipation can be
largely counteracted.

For any discrete field φi on vertices, whose interpolated continuous
field is φ =

∑
i∈V θiφi, discretizing it back to vertices again via

an integral in the form of (14) will result in a discrete field φ̃i that



appears smoothed compared to φi:

φ̃i =
1

âi

∫
Γ

θiφdS =
1

âi

∫
Γ

θi
∑
j∈V

θjφjdS (21)

=
1

âi
φi

∫
Γ

θ2
i dS +

1

âi

∑
i 6=j

φj

∫
Γ

θiθjdS (22)

=
1

2
φi +

1

2

∑
j∈V (i)

ωjφj ,where (23)

ωj =

∑
k∈F (i)∩F (j)

ak

2
∑

k∈F (i)

ak
. (24)

The weights ωj can be computed by evaluating the integrals over the
linear basis functions θ on triangles containing node i and collecting
the resulting terms. It is easy to verify that these weights form a
partition of unity: each term in the sum in the nomiator adds the
areas of the two triangles containing edge (i, j), the result is scaled
by twice the area of the neighborhood of node i, as illustrated in
Figure 4. Guided by this analysis, we apply Laplacian smoothing
after evaluating the velocity field by (14) and before the pressure
solve, with the negative coefficient − 1

2
and the same weights as

above, which effectively sharpens the velocity field just enough
to remove the numerical smoothing. In practice we use a slightly
smaller coefficient (e.g. -0.4 or -0.45) to retain a small amount of
smoothing, so that the explicit time integration is stable.

Boundary Element solve In order to solve (10) for pressure in-
duced by external forces, we use a direct boundary integral equation
formulation [Atkinson 1997], due to the mixed nature of our bound-
ary condition:

Θ(x)pF(x) =

∫
Γ

(
pF(y)

∂G(x,y)

∂ny
− ∂pF(y)

∂ny
G(x,y)

)
dSy,

(25)

where Θ(x) is the internal solid angle of the liquid domain Ω at
x ∈ Γ, discretized according to Mantic [1993] (below, we will
drop the subscript from pF in derivatives for legibility). We then
use a vertex-collocated linear BEM formulation as in Keeler and
Bridson [2014].

Special care must be taken at the triple junctions, where the surface Γ
is expected to have a sharp crease. Such geometric non-smoothness
often plagues collocated BEM solvers, as quantities like ∂p

∂n
may

take on different values on either side of the crease, creating a
discontinuity. We use a simplified version of the double nodes
technique [Hartmann 2012], taking advantage of the fact that the
pressure p is always continuous, and that the ∂p

∂n
discontinuity only

occurs at the triple junctions. The local geometry around a triple-
junction vertex can be seen as the union of the liquid-air interface
(part of ΓA) and the liquid-solid interface (part of ΓS), each a smooth
patch of surface isomorphic to a half-plane. Therefore, each vertex
on a triple junction holds two ∂p

∂n
values, one for the liquid-air

interface, which is an unknown, and the other for the liquid-solid
interface, which is given by the Neumann boundary condition in
(12). The pressure p, on the other hand, is not duplicated, and
its value on the triple junction is given by the Dirichlet boundary
condition in (11). This guarantees that there is still one unknown
and one collocation equation on each triple junction vertex, as for
all other vertices, and thus the resulting linear system is not over- or
underdetermined.

Pressure and discrete mean curvature Equation 11 requires
the evaluation of mean curvature H at a vertex. We discretize it
as the (signed) scalar mean curvature integral over the vertex local
neighborhood (the discrete mean curvature measure) [Cohen-Steiner
and Morvan 2003]. The integral mean curvature is then divided by
the vertex area âi to obtain the pointwise mean curvature H in
(11). This discretization scheme has been found to work well for
implementing surface tension as a pressure jump condition in the
Lagrangian setting [Da et al. 2015].

Figure 5: Surface tension force
balance at the triple junction.

Again, the triple junctions
must be treated differently,
as one of the principal cur-
vatures of the liquid sur-
face is essentially infinite,
making the mean curvature
not well-defined. Examin-
ing the force balance at a
triple junction point (Fig-
ure 5), we find the pressure
induced by the pairwise sur-
face tension forces between
the three phases as an integral over a strip of infinitesimal width
covering both sides of the triple junction,∫

pphasesds = (σLAtLA + σSAtSA + σSLtSL) · tSA, (26)

where subscripts LA, SA and SL stand for liquid-air, solid-air and
solid-liquid respectively, and the t vectors with various subscripts
are the unit tangent vectors in the corresponding interface, pointing
away from and orthogonal to the triple junction. The width of this
strip over which the surface tension force between three phases is
exerted is a numerical parameter, chosen so that the motion of non-
equilibrium triple junction configurations can be properly resolved
by the explicit time integration, while making the equilibrium con-
figuration sufficiently accurate. We find a value of 0.25 times the
average edge length works well.

Velocity update However, the BEM solve for pF yields pressure
values and normal derivatives, not the gradients required by the
update (13). For smooth regions of the surface, we interpolate
the vertex pressure linearly per face to obtain a piecewise-constant
tangential pressure gradient, and average them from faces to vertices.
This tangential gradient is then combined with the normal pressure
derivative ∂p

∂n
from the BEM solve to produce the full pressure

gradient. On triple junctions, across which the surface normal and
tangent vectors are different, we solve the following overdetermined
system via its normal equations for each triple junction vertex i,
essentially least-square fitting the various directional derivatives
known to us: 

nTS
nTA
tTSL
tTLA
tTTP

∇p =


∂p
∂nS
∂p
∂nA
∂p
∂tSL
∂p

∂tLA
∂p

∂tTP

 , (27)

where tTP is the unit tangent of the triple junction curve, and the
partial derivatives on the right hand side are obtained either from the
BEM solve (for normal derivatives) or from tangentially differentiat-
ing the pressure field (for tangential derivatives) as before. The first
four equations of this overdetermined system establish the pressure
gradient in the plane orthogonal to the triple junction. Although
redundant, only together can they span this plane reliably regardless



Figure 6: Dripping water. (A) – (D) A droplet pinches off near the
tap at a low flow rate. (E) An elongated stream is created before
droplet formation at a high flow rate.

of the contact angle at the triple junction; removing any of them
makes the system prone to ill-conditioning.

5 Results

This section presents the results of some simulation experiments
using the proposed method. The purpose of these experiments
is to explore what phenomena the method can produce, as well
as to investigate how restrictive the HVF assumption is and how
expressive the harmonic velocity fields can be.

Dripping The familiar phenomenon of water dripping from a sink
tap is driven by surface tension in a process known as the Rayleigh-
Plateau instability (Figure 6). Our method successfully captures the
entire process from the thinning of the neck to the pinch-off of the
droplet.

Water jets collision Bush and Hasha [2004] systematically stud-
ied the flow patterns resulting from laminar jets colliding at an angle,
identifying several regimes in a phase diagram parameterized by
the jet flow rate, surface tension coefficient, nozzle radius, etc. In
Figure 1, the most representative patterns are reproduced. Lower
flow rates and higher surface tension coefficients cause the liquid
jets shooting away from the original collision to bend back and meet
again for a second collision (and subsequently, a third, and so on).
Each collision flips the orientation of the liquid sheet plane by 90◦,
forming a so-called “fluid chain” structure (Figure 1 A). At higher
flow rates, the liquid sheet oscillates in the normal direction until
it disintegrates (Figure 1 B) or even ruptures violently (Figure 1
C), as a result of the liquid sheet flapping instability (highlighted in
Figure 7).

Splash on a hydrophobic surface The behavior of a liquid
droplet on a solid surface is greatly affected by the relative strength
of the surface tension at the liquid-solid interface and at the air-solid
interface. Figure 8 shows the splash created by the impact of a water
droplet on a hydrophobic solid surface.

Figure 7: Sheet flapping instability following a jet collision.

Figure 8: A water droplet impacting, splashing on, and rebounding
off a hydrophobic surface.

Crown splash When a droplet impacts on a water surface, the
resulting splash takes a distinctive “crown” shape as a result of
the Rayleigh-Plateau instability (Figure 9). The top of the crown
usually atomizes into many small droplets shooting off in different
directions. Level set based surface tracking methods are known to
lose these small droplets quickly. Our method was able to resolve
and maintain these droplets, recreating the splashes at a previously
unseen level of detail.

Droplet collision Figure 10 shows the splash patterns resulting
from the head-on collision of two droplets in zero gravity. The
extent of the splash and the atomization of the sheet is dictated by
the relative strength of surface tension and liquid inertia, which
is described by the dimensionless Weber number We = ρv2l/σ.
Our results qualitatively agree with the experimental observations
reported by Pan et al. [2009], successfully reproducing the “fingering
and separation” regime and the “breakup” regime (Figure 11) in the
correct parameter ranges.

In applications like ink-jet printing, off-center collisions are of more
practical interest since they are statistically more likely. Quan et
al. [2009] studied the intermediate configurations during the coa-
lescence and subsequent separation of two droplets using an un-
structured tetrahedral mesh solver. Figure 2 shows a side-by-side
comparison of our simulation and the results reported by Quan et
al. [2009] in Figure 16.



Test Mean verts Mean faces Max verts Max faces Mean frame time (s) Max frame time (s)
Dripping (fixed flow rate) 2143 4275 2706 5396 3.311 4.675
Dripping (varying flow rate) 3600 7183 5069 10130 4.296 9.235
Droplet impact (no gravity) 2384 4765 8829 17654 7.482 98.96
Droplet impact (with gravity) 1898 3791 8931 17852 6.465 108.99
Jet collision - fluid chains 7883 15763 11920 23836 64.73 176.8
Jet collision - disintegrating sheets 18195 36356 26733 53422 374.4 649.7
Jet collision - violent flapping 19992 39455 34445 68806 593.1 757.6
Crown splash (low surface tension, σ) 6547 13022 17102 33890 25.83 97.91
Crown splash (high σ) 5582 11131 15755 31358 14.56 73.62
Droplet collision (low σ) 7240 14331 18860 37718 47.08 530.2
Droplet collision (medium σ) 3729 7428 11952 23908 23.56 189.0
Droplet collision (high σ) 1862 3719 8157 16314 13.58 91.00

Table 3: Simulation run time and mesh complexity for various examples.

Figure 9: Crown splash.

Performance Table 3 summarizes the average and peak mesh
complexity over these simulations, and the corresponding run time
for one time step (all timing collected on a Core i7 3.4GHz CPU
running a single thread). The most expensive step is typically the
projection step due to the required double integral, followed by the
BEM solve. Besides the potential for fast summation techniques to
speed up these two steps (see discussion in Section 6), the projection
step is also easily parallelizable, as is the BEM solve if an iterative
solver is used. Some of the tests have greatly varying mesh sizes; for
example, the droplet collision tests become highly complex when
the splash is extensive, but the complexity falls off rapidly as soon
as individual droplets are formed.

6 Discussion

Our method represents the first surface-only numerical scheme prac-
tical for simulation of liquid phenomena involving large, splashy
motions, and therefore opens up a number of new questions and
future opportunities.

Our formulation—both the projection step and the boundary element
solve—assumes that the liquid domain is irrotational on the interior.
This excludes certain motions like swirling and vortices. However,
for the kinds of external forces and boundary contact conditions we
consider, vorticity cannot originate spontaneously in the interior of
an initially-irrotational fluid of uniform density, therefore we have no
risk of creating erroneous behavior, if the initial state is irrotational.
On the other hand, a no-slip boundary contact condition, such as that
needed for modeling the rolling of a droplet down an inclined plane,
can induce rotational motion, and is therefore outside the scope of
our current work. It would be interesting to superpose additional
rotational degrees of freedom, such as vortex particles [Selle et al.
2005; Park and Kim 2005], vortex rings [Angelidis and Neyret 2005;

Figure 10: Collision of two droplets, with various surface tension
coefficients.

Figure 11: Droplet collision simulated by our technique (bottom)
compared to physical experiment photos (top) by Pan et al. [2009]
in Figure 3 (c).



Weißmann and Pinkall 2010], and vortex sheets [Pfaff et al. 2012;
Brochu et al. 2012].

Our formulation also ignores the finite number of harmonic vector
fields that cannot be represented as the gradient of harmonic poten-
tials. It would be interesting to study in detail whether accurately
tracking the modes can reproduce a broader range of liquid phe-
nomena. As a preliminary exploration, we initialize a solid-donut
shaped liquid body with a rotational velocity (see Figure 12, and
the accompanying video in the additional supplemental materials).
Such a velocity cannot be represented by the gradient of a harmonic
potential; note, however, that it can be represented by our surface-
based vector field. We observe that the donut spins freely before the
Rayleigh-Plateau instability sets in and atomizes the domain. If we
consider a stronger surface tension coefficient, the donut collapses
into a droplet, which also continues to spin. As stated previously, for
the forces that we consider, Euler’s equations specify that the modes
in the kernel (such as the rotational mode here) should be conserved
over time; hence at least in this scenario, qualitatively the correct
behavior is observed.

Figure 12: Donut-shaped liquid body with a rotational velocity.

Although not required by our solver, it may be desirable to evaluate
the velocity at certain locations in the interior of the liquid domain
in some situations, such as for one-way solid coupling (an example
being entrained bubbles). This information is not directly available
on our surface-only representation, but can be obtained by solving
for a potential flow using the surface normal velocity as the Neumann
boundary condition, as described in Section 3.2 (the “Surface-only
representation” paragraph).

Our surface-based approach has the potential to scale favorably with
scene resolution compared to volumetric-based approaches. Al-
though we currently implement the boundary integrals via direct
summation, there are a number of fast summation techniques avail-
able (such as the Fast Multipole Method [Greengard and Rokhlin
1987] and Particle-Particle Particle-Mesh method [Zhang and Brid-
son 2014], to name just two) to accelerate this process to practically
linear complexity. Similarly, the boundary element solve can be
performed by an iterative solver with the matrix-vector multiplica-
tion accelerated by the same technique. The resulting numerical
method would scale linearly with the number of elements in the
surface mesh, which in turn scales quadratically with the inverse of
the spatial resolution.

In our numerical experiments with
asymmetrically colliding jets, we
also attempted to reproduce the pa-
rameter regime corresponding to the
“fishbone” observed by Bush and
Hasha [2004]. However our simula-
tion slowed down to ten minutes per
frame as we approached the forma-
tion of the fishbone, due to the num-
ber of triangle mesh elements and the
quadratic scaling of the boundary in-
tegral quadrature. This suggests that
the fishbone is an ideal testbed for
these fast summation methods. A 3D

grid, on the other hand, would scale cubically, due to its volumetric
nature. As the space of potential geometric features also scales
quadratically with the inverse resolution, our method, combined
with fast summation techniques, would achieve an asymptotically
optimal complexity.

Our Helmholtz decomposition-based incompressibility projection
requires evaluation of two boundary integrals, and does not require
a linear solve. It could be adapted for other applications, such as
volume-conserving elastic deformation to remove divergence, or
in other surface-only models like that of Zhang et al. [2012] as an
alternative to local volume correction.
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Appendix: Orthogonality of Helmholtz Decom-
position

We dissect (3) from the perspective of the Hodge decomposition
[Abraham et al. 1988], which decomposes a differential k-form ω
into the sum of an exact component dα, a co-exact component δβ,
and a harmonic (closed and co-closed) component γ, while guar-
anteeing the components are mutually orthogonal provided certain
boundary conditions are met. Applying it to our scenario, we decom-
pose the 1-form u[, in which case d and δ correspond to gradient and
curl respectively. Based on the observation on the divergence and
curl of each term above, we find that (∇ΦΩ)[ = dΦΩ is the exact
component, (−∇×AΩ)[ = −δ(∗A[

Ω) is the co-exact component,

Harmonic
−∇ΦΓ +∇×AΓ

Co-exact
−∇×AΩ = 0

Exact
∇ΦΩ

and the two boundary integral terms
(−∇ΦΓ+∇×AΓ)[ together become
the harmonic component. For this sce-
nario, Abraham et al. [1988] prove in
Theorem 8.5.5 that the decomposition
is indeed orthogonal, and in particular,
the exact component is orthogonal to

the harmonic component (summarized in the incident figure). Con-
verting back to vector fields, this means that the velocity constructed
from the two boundary integral terms,

u = −∇ΦΓ +∇×AΓ, (28)

satisfies

∇ · u = 0, (29)
(u− u) ⊥ u, (30)

and we have found the desired post-projection velocity u.


