3,064 research outputs found

    Pseudo-Goldstone Modes in Isospin-Asymmetric Nuclear Matter

    Get PDF
    We analyze the chiral limit in dense isospin-asymmetric nuclear matter. It is shown that the pseudo-Goldstone modes in this system are qualitatively different from the case of isospin-symmetric matter.Comment: 15 pages, ReVTeX, no figure

    Defect and equivalence of unitary matrices. The Fourier case

    Full text link
    Consider the real space D_U of directions moving into which from a unitary N x N matrix U we do not disturb its unitarity and the moduli of its entries in the first order. dim( D_U ) is called the defect of U and denoted D(U). We give an account of Alexander Karabegov's theory where D_U is parametrized by the imaginary subspace of the eigenspace, associated with lambda = 1, of a certain unitary operator I_U on the N x N complex matrices, and where D(U) is the multiplicity of 1 in the spectrum of I_U. This characterization allows us to establish dependence of D(U_1 x ... x U_r) - where x stands for the Kronecker product - on D(U_k)'s, to derive formulas expressing D(F) for a Fourier matrix F of the size being a power of a prime number, as well as to show the multiplicativity of D(F) with respect to Kronecker factors of F if their sizes are pairwise relatively prime. Also partly due to the role of symmetries of U in the determination of the eigenspaces of I_U we study the 'permute and enphase' symmetries and equivalence of Fourier matrices, associated with arbitrary finite abelian groups.Comment: 92 pages. The paper has undergone hundreds of minor corrections and improvements. Some paragraphs have been completely changed, a few addded. Sections Introduction and Conclusions have been added, as well as a new abstrac

    Quantum Chaotic Environments, The Butterfly Effect, And Decoherence

    Get PDF
    We investigate the sensitivity of quantum systems that are chaotic in a classical limit, to small perturbations of their equations of motion. This sensitivity, originally studied in the context of defining quantum chaos, is relevant to decoherence in situations when the environment has a chaotic classical counterpart.Comment: 4 pages, 3 figure

    Resilient Quantum Computation: Error Models and Thresholds

    Get PDF
    Recent research has demonstrated that quantum computers can solve certain types of problems substantially faster than the known classical algorithms. These problems include factoring integers and certain physics simulations. Practical quantum computation requires overcoming the problems of environmental noise and operational errors, problems which appear to be much more severe than in classical computation due to the inherent fragility of quantum superpositions involving many degrees of freedom. Here we show that arbitrarily accurate quantum computations are possible provided that the error per operation is below a threshold value. The result is obtained by combining quantum error-correction, fault tolerant state recovery, fault tolerant encoding of operations and concatenation. It holds under physically realistic assumptions on the errors.Comment: 19 pages in RevTex, many figures, the paper is also avalaible at http://qso.lanl.gov/qc

    Spin-gap opening accompanied by a strong magnetoelastic response in the S=1 magnetic dimer system Ba3BiRu2O9

    Full text link
    Neutron diffraction, magnetization, resistivity, and heat capacity measurements on the 6H-perovskite Ba3BiRu2O9 reveal simultaneous magnetic and structural dimerization driven by strong magnetoelastic coupling. An isostructural but strongly displacive first-order transition on cooling through T*=176 K is associated with a change in the nature of direct Ru-Ru bonds within Ru2O9 face-sharing octahedra. Above T*, Ba3BiRu2O9 is an S=1 magnetic dimer system with intradimer exchange interactions J0/kB=320 K and interdimer exchange interactions J'/kB=-160 K. Below T*, a spin-gapped state emerges with \Delta\approx220 K. Ab initio calculations confirm antiferromagnetic exchange within dimers, but the transition is not accompanied by long range-magnetic order.Comment: 5 pages, 5 figures, accepted by Physical Review

    Size fluctuations of the initial source and the event-by-event transverse momentum fluctuations in relativistic heavy-ion collisions

    Full text link
    We show that the event-by-event fluctuations of the transverse size of the initial source, which follow directly from the Glauber treatment of the earliest stage of relativistic heavy-ion collisions, cause, after hydrodynamic evolution, fluctuations of the transverse flow velocity at hadronic freeze-out. This in turn leads to event-by-event fluctuations of the average transverse momentum, p_T. Simulations with GLISSANDO for the Glauber phase, followed by a realistic hydrodynamic evolution and statistical hadronization carried out with THERMINATOR, lead to agreement with the RHIC data. In particular, the magnitude of the effect, its centrality dependence, and the weak dependence on the incident energy are properly reproduced. Our results show that bulk of the observed event-by-event p_T fluctuations may be explained by the fluctuations of the size of the initial source.Comment: 5 pages, 4 figures, version accepted in PR

    High intensity study of THz detectors based on field effect transistors

    Full text link
    Terahertz power dependence of the photoresponse of field effect transistors, operating at frequencies from 0.1 to 3 THz for incident radiation power density up to 100 kW/cm^2 was studied for Si metal-oxide-semiconductor field-effect transistors and InGaAs high electron mobility transistors. The photoresponse increased linearly with increasing radiation power up to kW/cm^2 range. The saturation of the photoresponse was observed for all investigated field effect transistors for intensities above several kW/cm^2. The observed signal saturation is explained by drain photocurrent saturation similar to saturation in direct currents output characteristics. The theoretical model of terahertz field effect transistor photoresponse at high intensity was developed. The model explains quantitatively experimental data both in linear and nonlinear (saturation) range. Our results show that dynamic range of field effect transistors is very high and can extend over more than six orderd of magnitudes of power densities (from 0.5 mW/cm^2 to 5 kW/cm^2)
    • 

    corecore