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The concept of mesons modified by the nuclear medium has been used for many years 

[l]. It has been generally assumed that although the properties of pions and kaons (mass, 

decay constant, coupling constants, etc.) are changed by the presence of the medium, their 

pseudo-Goldstone nature is preserved.' In the vacuum, the masses of pions or kaons are 

known to be proportional to the square root of the current quark masses, according to the 

Gell-Mann-Oakes-Renner (GMOR) relation [a]. However, in nuclear matter this need not 

be the case. 

In this paper we show, that the nature of charged pionic excitations in a dense isospin- 

asymmetric medium, or kaonic excitations in a non-strange medium, is radically different 

than what is seen in the vacuum results. With no dynamical assumptions other than the 

fact the current quark masses are sufficiently light, and that expectation values of physical 

operators do not diverge, one can show that in such a medium there must exist at least one 

pseudo-Goldstone mode with an energy that scales with the average current quark mass as 

where d 2 $. This is in sharp contrast with the case of the vacuum or isoscalar matter, 

where the energy of the Goldstone modes goes as m1/2. 

Moreover, if one makes highly plausible assumptions about the behavior of the chemical 

potential for the system as one varies the quark masses, then one can show even more peculiar 

behavior. In the vacuum one has pairs of charged pseudo-Goldstone excitations (T+-T- 

or K+-K-). As one goes to a dense isospin-asymmetric medium (such as dense neutron 

matter), however, given these assumptions one can show that only one member of this pair 

survives as a pseudo-Goldstone mode. In addition, the excitation of the surviving pseudo- 

Goldstone boson is proportional to the current quark mass mp itself, rather than to fi, 
as in the vacuum case. Specifically, we find that in the chiral limit in neutron matter there 

exist 1) a pseudo-Goldstone mode with quantum numbers 7rf with excitation energy N m4,  

l A  mode can be identified as a pseudo-Goldstone mode, if its excitation energy vanishes in the 

chiral limit of zero quark mass. 
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2) pseudo-Goldstone mode with quantum numbers TO with excitation energy N l/m9, and 

3) there are no pseudo-Goldstone modes with quantum number of T-. 

Our analysis is similar in many respects to that of Ref. [3], however that work implicitly 

assumes that the medium has low density. Mathematically, this equivalent to expanding in 

density before expanding in the quark mass. This is clearly appropriate for mesonic atoms, 

where the meson feels only the tail of the nucleus at a fraction of the nuclear saturation 

density, po. Here we are interested in studying sufficiently dense systems so that it becomes 

appropriate to consider chiral lamit with the density kept  constant. We will present some 

model estimates indicating that this situation may be realized in nature if the density of 

matter is of the order of a few po. We will also demonstrate explicitly for a simple model 

that the chiral and low (isovector) density limits do not commute: an expansion in the small 

parameter associated with one limit is singular in the expansion parameter associated with 

the other limit. Thus, physics associated with the two limits will be quite different. 

The paper is organized as follows: First, we derive our general result of existence of 

unusually soft pseudo-Goldstone modes in nonsymmetric nuclear medium. Next, we present 

a simple model illustrating that behavior and give some numerical estimates of where we 

might see these unusually soft modes. Finally, we discuss the case of kaons in non-strange 

matter. 

We find it useful to introduce the function dim,(X) = l i m ~ + ~ ( E ' T ~ ) ,  which we call 

the chirul dimension of the quantity X. If near the chiral limit X scales with the quark 

mass as a power law in m, i .e. if X - E", then function dim,(X) extracts the power a. 

For instance, in the vacuum dim,(m,) = 1/2 and dim,(F,) = 0. The result is not modified 

by the presence of logarithms i . e .  dim,(m" log" m) = a. 

The starting point of our analysis is similar as in the derivation of the standard GMOR 

relation. We examine the expression for the double commutator of the QCD hamiltonian 

density at point 2 = 0, R(O), with the axial vector charges Qt = Jd3zJ,",,(z), where J;+ 

is the axial vector current. This expression can be evaluated directly through the use of 

commutation rules for the quark fields: 

3 



[Q:, [Q:, 3 - I ( O ) ] ]  = G(0) { x a / 2 ,  { x u / a ,  LW} $ ( O )  , any a = 1, --., 8 (1) 

where A" are the Gell-Mann flavor matrices, n/r = diag(m,, md, m,) is the quark mass matrix, 

and curly brackets denote anti-commutators. Next; we take the matrix element of both sides 

of the above operator relation in some physical state IC). In all of our applications this state 

will be taken to be spatially unzforrn. The matrix element of the RHS of Eq. (1) yields a 

linear combination of quark condensates of various flavors. For simplicity of notation, let 

us consider the case of two flavors: with mu = md = E. The generalization to 3 flavors is 

straightforward. We then obtain 

On the other hand, the LHS of the preceding equation may be evaluated by inserting a 

complete set of intermediate states, yielding a sum rule. 

Since the system IC) is spatially uniform, these intermediate states can be labeled by their 

three-momentum, and some additional label j. We denote them as l j , f l .  It is convenient to 

measure the three-momentum, p': and the energy, Ej,  of the intermediate states relative to 

the ground state IC) at rest. The total energy and the total three-momentum of the state 

Ij, $ and of the ground state IC) both form Lorentz four-vectors. Their difference is therefore 

also a four-vector, and the unity can be decomposed in the following Lorentz-invariant way: 

Inserting Eq. (3) inside the LHS of Eq. (l),  and using the fact that the ground state 

and the intermediate states are eigenstates of the hamiltonian H = Jd3z'FI(z), namely 

HIC) = EclC) and Hlj ,$  = ( E c  + E j ) / j , $ ,  we obtain the following relation: 

We may use the following operator relation 



to relate the matrix elements of to the matrix elements of D". We find 

- m 
(CIJ&(O)jj,P'= 0) = -z-(cpa(o)~j,+= 0). 

EJ 

Using Eq. (6) we may rewrite Eq. (4) in the equivalent form which is familiar from the 

derivation of the GMOR relation: 

Let us now recall the usual arguments leading from the preceding general result to the 

GMOR relation. In the GMOR case, the state IC) is simply the vacuum. First, we note that 

all excitation energies E? are positive, since the vacuum is, be definition, the lowest-energy 

state of the system. Therefore all components of the LHS are positive. Next, consider taking 

the limit + 0 on both sides of Eq. (7). The RHS is assumed to go to a nonzero constant as 

a result of the spontaneous chiral symmetry breaking, i. e. dim,( (Qq)) = 0. On the LHS only 

the terms with pseudo-Goldstones can contribute. This is because dim,( (OlD"(O)lj,$= 0) = 

0, and thus only the states for which dim,(E,) = 1 /2  can contribute to  the sum rule in the 

chiral limit. In the vacuum, E? is just the mass of the excited particle (pion). Furthermore, 

from isospin symmetry we have m,o = m,+ = m7-. 

In the present case our state IC) is not the vacuum. Rather, we take IC) to be the 

ground state of the system subject to a constraint which requires that the expectation value 

of some local (space-independent) operator c ( x )  (which commutes with H )  has a fixed value, 

i.e. (CIc(z)IC) = c = const. In our case we are interested in medium with a given flavor 

density, and c(z) = puusu + pdd+d or c(z) = 3pB(u+u + d+d) + p ~ = ~ ( u + u  - dSd), where 

p's are the corresponding chemical potentials for up and down flavors, or alternatively for 

the baryon number density and the isovector density operator u+u - dsd. If c # 0, then we 

have no guarantee that EJ is positive definite. The operator J&-, may connect to states with 

a lower energy. 

There are two distinct cases to consider: 1) the operator c(z) commutes with the axial 

vector charges or 2) the operator c(z) does not commute with the axial vector charges. As 
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already noted in Ref. [4], if c ( x )  commutes with Qg (or equivalently with D"), then the states 

with negative Ej do not contribute in the sum rule. This is simply because in this case D" 

connects IC) only to intermediate states with the same value of c,  and, by definition, IC) is 

the lowest energy state of a given value of c. 

One physical situation where the constraint commutes with the D" operators is the case 

of finite baryon density with zero isovector density (isospin symmetric nuclear matter). In 

this case the conclusions from the sum rule (7) are obtained analogously to the vacuum case, 

and, so long as (?jq)c # 0 in the chiral limit, we conclude there must exist pseudo-Goldstone 

excitations with E3 N &% with quantum numbers of TO, ;r+ and T - . ~  Isospin symmetry 

causes the neutral and charged excitations to be degenerate in energy. Thus, from the point 

of view of the GMOR relation, symmetric nuclear matter behaves similarly to the vacuum. 

Take nonsymmetric nuclear 

medium, i.e. , L I ~ = ~  (Cl(u+u - d+d)IC) # 0. 'The neutral pseudo-Goldstone excitation still 

behaves in the usual way, since the neutral axial vector charge commutes with the third 

isospin component of the isospin charge, Q;. Hence, as already remarked in [4], even in 

nonsymmetric matter we have a neutral pseudo-Goldstone excitation such that &o N &%. 

The case of charged pionic excitations, however, is radically different for two reasons. The 

first is that the isovector constraint does not commute with the charged axial vector charges 

Qi and Q:. The second difference is related to the existence of a second sum rule which is 

trivially zero for an isoscalar medium but not for a medium with nonzero isospin density. 

This sum rule is derived rather easily. Using the fact that [Qg, J&(O)] = ieabcJ;(O), where 

J i  is the vector current, and inserting Eq. (3) inside the commutator, we obtain 

Now we come to the main topic of our considerations. 

where we have decomposed the sum over j into two classes of states: those with isospin one 

2The case where (-Qq)c = 0 is interesting in its own right. This problem 

ref. [4 
is discussed in detail in 
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unit more ( j + )  or less ( j - )  than in IC). Equation ('7) may be decomposed similarly, giving 

Now consider the sum rule given in Eq. (8) as one approaches the chiral limit. In isovector 

matter, the left hand side of this sum rule is nonzero. by definition. Accordingly, at least 

one term in this sum rule must be nonzero. However, all terms in the sum rule go as E / E ;  

times matrix elements. Since the matrix elements are assumed to be finite in the chiral 

limit, one sees that the only way any term can make a contribution in the chiral limit is if 

dim,(Ej) 2 2/3. This completes the demonstration of the first point of this Letter. Note, 

that this relation is written as inequality rather than an equality since it is possible that the 

chiral dimension of the matrix element could well be > 0. Indeed, as we will show below, 

given reasonable assumptions it is in fact > 0. 

To proceed further we need to make the assumption that the chiral dimension of the 

isovector chemical potential dim,(pr=l) = 0. Since we are implicitly taking the chiral limit 

at a fixed isospin density we can treat pr=l as an external parameter ,  independent 

of the chiral parameter - the assumption which we must make is that the difference in 

energy density between this state and the the lowest isospin symmetric state is independent 

of m. Although we cannot prove that dimx(,uI=l) = 0 from first principles, we can present 

the following physical argument in its favor: The isovector interaction has a contribution 

produced by the p-meson exchange. Suppose we place an object of isospin 13 in the isovector 

medium. The interaction is (g,2/m;) pr=113, and the corresponding chemical potential is 

(gz / rn: )  pz=1. Here g, and m, are p-meson coupling constant and mass in the medium. 

Their chiral dimension in the vacuum is 0, and, unless something very unusual happens, this 

is also true in medium. Therefore p-exchange produces dim,(pz=1) = 0. It is very unlikely 

that this result could be altered by other processes - they would have to exactly cancel the 

p-exchange mechanism. 

Equipped with the assumption that dimx(pl=l) = 0, we can continue the analysis of 

the sum rules (8) and (9). Suppose for definiteness that pzZl > 0 (as it is for neutron 
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matter). iFrom definition of the chemical potential as the minimum energy needed to lower 

the isospin by one unit, we have 

Therefore the energies of states with one unit of isospin less than IC), Ej-, can never go to 

zero. In the chiral limit only the states with EI --+ 0 can contribute to the sum rules (8) 

and (S), and as a result only the states j+ contribute. Note, this is very different from the 

vacuum case - it shows that in neutron matter the T +  modes can be pseudo-Goldstone 

modes while the 7r- cannot. Restricting the sum rules to the j+ modes only gives 

and 

Now, the sum rule (11) contains only semi-negative contributions. Comparing the chiral 

dimensions on both sides, it follows that there must exist a mode for which 

0 = 2 - 3 dim,(Ej+) + 2 dim,((j+,p’= OlD+(O)[C)) . (13) 

The sum rule (12) may contain both positive and negative contributions, since the sign of 

Ej, is not restricted. That means that in principle there may be cancellations of the leading 

chiral dimension on the RHS of Eq. (12), and we obtain the following inequality: 

dimx(@) L 1 - 2 dim,(Ej+) + 2 dim,((j+,p’= OlD+(O)IC)) . (14) 

The conjunction of conditions (13) and (14) gives dim,(Ej+) 5 1 + dim,((Qq))c. The 

inequality becomes equality unless there is an exactly cancellation of the leading order 

contribution on the RHS of Eq. (12). For instance, the equality is automatically the case if 

there is only one state I j+,@= 0) which becomes a pseudo-Goldstone mode. Also, potential 

cancellations are not associated with any symmetry, hence it is difficult to imagine that the 
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leading chiral dimension can indeed be exact canceled on the RHS of Eq. (12). With no 

cancellations we have 

If we are in the spontaneously broken phase, then we expect that dim((qq)c) = 0, as in 

the vacuum. Clearly, this dimension has at least to be positive semi-definite, if the chiral 

condensate is to be well-behaved in the chiral limit. This leads to the following final result: 

dim,(Ej+) = 1 , dim,(D+) = 1/2 ~ = 1 / 2 ,  (16) 

where the third equality follows from Eq. (6). Xote that this behavior is radically different 

than in the vacuum, where we have 

dim,(m,) = 1/2 dim,(Df) = 0 ,  dimx(J&,) = 1 / 2 .  

Of the three pionic pseudo-Goldstone modes in the vacuum, only only 2 survive as pseudo- 

Goldstone modes in dense isovector matter. For negative p ~ = ~  the negative charge excitation 

disappeared, the positive charge excitation became unusually soft, E,+ - E, and the neutral 

excitation retained its chiral dimension, E,o N e. If pIz1 > 0, then the positive and 

negative excitation change the roles. 

The fact that only one member of the pair of charged pseudo-Goldstone mesons remains a 

pseudo-Goldstone mode in dense isospin-asymmetric matter is quite natural. The medium 

itself breaks the symmetry between the members of the pair - thus one would be quite 

surprised if they had the same energy. One expects the symmetry breaking induced the 

medium to split the degenercy between the two states. However, as one approaches the 

chiral limit a pseudo-Goldstone mode must go to zero excitation energy. Thus, if both 

modes were pseudo-Goldstone modes they would both have to approach zero and hence 

would become degenerate. 

Before giving an illustrative example, let us recapitulate our derivation, listing all as- 

sumptions made on the way. First, let us stress that what we were after is a fundamen- 

tal result derived without any explicit reference to dynamics, microscopic structure of the 
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modes, etc. In matter these modes are undoubtedly quite complicated, involving particle- 

hole excitations, etc. We have not made any dynamical assumptions. These were our key 

ingredients: 

1. The chiral limit is taken first, while the isovector density is kept constant. 

2. “Reasonableness’’ conditions are that expectation values of operators, e.g. (qq)c, do 

not diverge in the chiral limit. If this were not true, than the chiral limit would not 

make sense in the isovector matter. 

3. The isovector chemical potential is assumed to be nonzero in the chiral limit. 

4. We also assumed that there are no exact cancellations of the leading chiral powers in 

the sum rule (9). This assumptions is equivalent to having no (accidental) cancellations 

from a priori possible multiple branches of pseudo-Goldstone modes. If there is only 

one such branch, this result follows trivially. 

Assumptions 1) and 2) are sufficient to show that there exists a pseudo-Goldstone mode for 

which dim,(Ej) 2 2/3. Assumptions 1) - 4) give dim,(E,) = 1 for this mode. 

Now, let us present a simple model which will illustrate the behavior of pseudo-Goldstone 

modes in nonsymmetric medium. Consider the pion propagating in an isovector medium 

and interacting with it through the p-meson exchange. Moreover, in this toy model, we will 

assume that the p-meson exchange is the only interaction between the pions and the medium. 

As is well known [ 5 ] ,  if all vector-isovector interactions are mediated by the p meson, then 

consistency of the p exchange picture with the various soft-pion theorems requires the KSFR 

[6] relation rn;/g; = 2F: to be exact. The inverse propagator for the T* mesons with four- 

momentum p is (G(p)*)-’ = p2 - rn: f p o A ,  where A = (gz/rn:)pl=1. The (positive energy) 

poles of G(p) for the pion at rest ($= 0) occur at 

E- = A/2 $- 4A2/4  + m.2, 
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In the chiral limit, E+ t m;/A - this is the unusually soft pseudo-Goldstone mode, 

with dim(E+) = 1, and E- -+ A - this is no longer a pseudo-Goldstone mode, since 

dim(E-) = 0. This is precisely the behavior which we predicted. Obviously, the neutral 

pion in unchanged by the isovector interactions, and dim,(E+) = 1/2. 

Let us also examine the matrix elements of the operator D*. We have, from definition 

( 5 ) ,  D* = P J & / E  = (F,m:/m) T*, where T* is the (charged) pion interpolating field, 

and F, is the pion decay constant in the vacuum. Let abbreviate the states corresponding 

to excitations E* by I*). Using I(&/T*IC)I~ = liIILpo,EJ 2EJ(po - Ef)G*(p0,$= 0), where 

j = + or -, we find that in the chiral limit I(+jD+,C)/2 + 2 F 3 r ~ : / ( A ~ ~ ~ )  - m, in 

compliance to the general result (13); and ~ ( - / D + ~ C ) ~ 2  - 1. Only the positive charge mode 

- 

saturates the sum rules (8) and (9). Explicitly, we get 

and 

Equation (19) means that, as expected, consistency in the chiral limit requires the KSFR 

relation to be exact. Relation (20) also shows the formal consistency, since exactly the same 

equation is obtained by considering the sum rule for the neutral pion. Since the neutral pion 

is not affected by the p-exchange, we immediately get Eq. (20). 

Under what circumstances is the analysis here useful? - i.e. at what isospin density 

does the system go from effectively having three pseudo-Goldstone modes whose energies 

all have chiral dimension 1/2 to having two pseudo-Goldstone modes whose energies have 

chiral dimension of 1 and 1/2. Formally, the analysis is valid for any nonzero isospin density 

provided we go to the m4 -+ 0 limit. On the other hand, in nuclear physics the value of m4, 

though small, is nonzero. Thus, the question of interest is under what circumstances is the 

quark mass small enough so that the results of m4 ---f 0 limit are close to the physical results. 

The toy model considered above, although probably quite unrealistic, gives us considerable 

insight. 
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Consider Eq. (18); one approaches the limit in which the present analysis applies when 

( A [ / 2  >> m,. We note that in this toy model A = (p I=lg ; ) /m:  is the chemical potential 

associated with isospin, pIz1. Also in this simple model, m, is the energy of the pseudo- 

Goldstone mode when pI=1 = 0. In the general case it may be different from m,, so let 

us denote it by Eo. Thus, a reasonable general criterion for the region of applicability 

of our analysis is when p1=1 >> Eo. In our toy model, this condition is equivalent to 

Ip1=1 I >> i j  G 4F;m, N :3.7p,, where po is the nuclear saturation density. The above estimate 

used the vacuum values of F, and m,. However, this probably leads to an overestimation 

of 7, because matter with large isovector density also has large baryon density, p ~ ,  which 

considerably reduces the value of F, from its vacuum value [7-141. In turn, 7 should be 

substantially reduced by the presence of p ~ .  

We also note one more fact illustrated by our toy model. It is apparent that the chiral 

limit and the low-isovector-density limit do not commute. In our model in the chiral limit 

the expansion parameter is a = m:F, /p~=~ - this is singular in the isovector density. 

Conversely, in in the low density limit the expansion parameter is 1/a, and this, it turn, is 

singular in m,. We believe this is a manifestation of a general result. 

Now let is turn our attention to kaons, since recently the possibility of S-wave kaon 

condensation has been extensively discussed [13-20,14]. The meaning of the chiral limit 

in this case is somewhat subtle and this subtlety greatly affects the applicability of our 

analysis. As the current quark masses tend to zero (including m,) two phenomena happen 

in the nuclear medium. One is the change of properties of particles, which is the subject 

of our analysis. The second phenomenon is the change of the ground state of the medium 

it self. 

In the strict SU(3)  chiral limit the ground state of matter has equal amount of up, 

down and strange quarks. In that case the octet of axial vector charges commutes with 

the (baryon number) constraint, and pions, kaons and 7 are the usual pseudo-Goldstone 

excitations with E" N Jma. This is not the situation of relevance at moderately low 

densities. At first sight, one might rather keep the matter non-strange, by imposing the 
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. 
constraint puu+u + pdd'd, and watch the formal behavior of the kaon as m, -+ 0. In 

this case the a = 4, ..., 7 components of the axial vector charge do not commute with the 

constraint. The situation is analogous to the case of the charged pion in nonsymmetric 

medium. We only have to change the usual I-spin into U-spin or V-spin. Again, only two 

kaon-like excitation (out of 4 in the vacuum) are pseudo-Goldstone modes, with excitation 

energy N m4. 

The preceding argument, however, is formal; it depends on using p U u f u  + pdd+d as the 

constraint. This is not the relevant constraint for the neutron matter calculations-at least 

in the interesting applications to neutron stars. In that case of interest the constraints are 

on the net baryon density and the net charge density [15-191. The reason that these are the 

appropriate constraints is clear-in the neutron star case one is working at long times scales 

for which the system can be expected to be in equilibrium with respect to weak interaction 

processes which can change the flavor quantum numbers. Accordingly, the analysis given 

above does not give any quantitative insight into the problem of kaon condensation. 

In conclusion, we have shown the behavior of pseudo-Goldstone modes in dense isospin- 

asymmetric nuclear matter is very different from the case of the vacuum or isospin symmetric 

matter. Of the three pionic modes which exist in the vacuum only two remain in dense 

isovector matter. Moreover, of these remaining modes, the charged mode is anomalously 

light-having a chiral dimension of one rather than one half. 

This work has been supported by the NSF-Polish Academy of Science grant #INT- 
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