4,394 research outputs found
Lightlike infinity in GCA models of Spacetime
This paper discusses a 7 dimensional conformal geometric algebra model for
spacetime based on the notion that spacelike and timelike infinities are
distinct. I show how naturally of the dimensions represents the lightlike
infinity and appears redundant in computations, yet usefull in interpretationComment: 12 page
Macrobenthic assemblage structure and organismal stoichiometry control faunal processing of particulate organic carbon and nitrogen in oxygen minimum zone sediments
Peer reviewedPublisher PD
Gravitational dynamics for all tensorial spacetimes carrying predictive, interpretable and quantizable matter
Only a severely restricted class of tensor fields can provide classical
spacetime geometries, namely those that can carry matter field equations that
are predictive, interpretable and quantizable. These three conditions on matter
translate into three corresponding algebraic conditions on the underlying
tensorial geometry, namely to be hyperbolic, time-orientable and
energy-distinguishing. Lorentzian metrics, on which general relativity and the
standard model of particle physics are built, present just the simplest
tensorial spacetime geometry satisfying these conditions. The problem of
finding gravitational dynamics---for the general tensorial spacetime geometries
satisfying the above minimum requirements---is reformulated in this paper as a
system of linear partial differential equations, in the sense that their
solutions yield the actions governing the corresponding spacetime geometry.
Thus the search for modified gravitational dynamics is reduced to a clear
mathematical task.Comment: 47 pages, no figures, minor update
Microdroplet-tin plasma sources of EUV radiation driven by solid-state-lasers (Topical Review)
Plasma produced from molten-tin microdroplets generates extreme ultraviolet light for state-of-the-art nanolithography. Currently, CO2 lasers are used to drive the plasma. In the future, solid-state mid-infrared lasers may instead be used to efficiently pump the plasma. Such laser systems have promise to be more compact, better scalable, and have higher wall-plug efficiency. In this Topical Review, we present recent findings made at the Advanced Research Center for Nanolithography (ARCNL) on using 1 and 2 Îźm wavelength solid-state lasers for tin target preparation and for driving hot and dense plasma. The ARCNL research ranges from advanced laser development, studies of fluid dynamic response of droplets to impact, radiation-hydrodynamics calculations of, e.g. ion 'debris', (EUV) spectroscopic studies of tin laser-produced-plasma as well as high-conversion efficiency operation of 2 Îźm wavelength driven plasma
RBC and WBC fatty acid composition following consumption of an omega 3 supplement: Lessons for future clinical trials
<p>Abstract</p> <p>Background</p> <p>Results from increasing numbers of <it>in vitro </it>and <it>in vivo </it>studies have demonstrated that omega 3 fatty acids incorporated in cell culture media or in the diet of the animals can suppress the growth of cancers. When human clinical trials are initiated to determine the ability of omega 3 fatty acids to alter growth or response to chemotherapeutic interventions of cancers, it will be essential to determine the omega 3 intake of individuals in the trial to determine compliance with consumption of the supplement and to correlate with endpoints of efficacy. We wondered if the fatty acid composition of RBCs might accurately indicate incorporation of omega 3 fatty acids in the WBCs. In this report we determine and compare the changes in fatty acid compositions of red blood cells and white blood cells in response to consumption of three doses of an omega 3 fatty acid supplement.</p> <p>Results</p> <p>We found that the fraction of omega 3 fatty acids in both red blood cells and white blood cells increased following consumption of the supplement. There was a linear, dose responsive increase in the fraction of omega 3 fatty acids in red blood cells but the increase in omega 3 in white blood cells was not linear. The magnitude of increase in omega 3 fatty acids was different between the two cell types.</p> <p>Conclusions</p> <p>Fatty acid analysis of red blood cells is a good measure of compliance with supplement consumption. However, fatty acid analysis of white blood cells is needed to correlate changes in fatty acid composition of white blood cells with other biochemical changes in the white blood cells.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00899353.</p
A self-consistent perturbative evaluation of ground state energies: application to cohesive energies of spin lattices
The work presents a simple formalism which proposes an estimate of the ground
state energy from a single reference function. It is based on a perturbative
expansion but leads to non linear coupled equations. It can be viewed as well
as a modified coupled cluster formulation. Applied to a series of spin lattices
governed by model Hamiltonians the method leads to simple analytic solutions.
The so-calculated cohesive energies are surprisingly accurate. Two examples
illustrate its applicability to locate phase transition.Comment: Accepted by Phys. Rev.
X-ray Halos and Large Grains in the Diffuse Interstellar Medium
Recent observations with dust detectors on board the interplanetary
spacecraft Ulysses and Galileo have recorded a substantial flux of large
interstellar grains with radii between 0.25 and 2.0 mu entering the solar
system from the local interstellar cloud. The most commonly used interstellar
grain size distribution is characterized by a a^-3.5 power law in grain radii
a, and extends to a maximum grain radius of 0.25 mu. The extension of the
interstellar grain size distribution to such large radii will have a major
effect on the median grain size, and on the amount of mass needed to be tied up
in dust for a given visual optical depth. It is therefore important to
investigate whether this population of larger dust particles prevails in the
general interstellar medium, or if it is merely a local phenomenon. The
presence of large interstellar grains can be mainly inferred from their effect
on the intensity and radial profiles of scattering halos around X-ray sources.
In this paper we examine the grain size distribution that gives rise to the
X-ray halo around Nova Cygni 1992. The results of our study confirm the need to
extend the interstellar grain size distribution in the direction of this source
to and possibly beyond 2.0 mu. The model that gives the best fit to the halo
data is characterized by: (1) a grain size distribution that follows an a^-3.5
power law up to 0.50 mu, followed by an a^-4.0 extension from 0.50 mu to 2.0
mu; and (2) silicate and graphite (carbon) dust-to-gas mass ratios of 0.0044
and 0.0022, respectively, consistent with solar abundances constraints.
Additional observations of X-ray halos probing other spatial directions are
badly needed to test the general validity of this result.Comment: 17 pages, incl. 1 figure, accepted for publ. by ApJ Letter
Numerical Investigation of a Mesoscopic Vehicular Traffic Flow Model Based on a Stochastic Acceleration Process
In this paper a spatial homogeneous vehicular traffic flow model based on a
stochastic master equation of Boltzmann type in the acceleration variable is
solved numerically for a special driver interaction model. The solution is done
by a modified direct simulation Monte Carlo method (DSMC) well known in non
equilibrium gas kinetic. The velocity and acceleration distribution functions
in stochastic equilibrium, mean velocity, traffic density, ACN, velocity
scattering and correlations between some of these variables and their car
density dependences are discussed.Comment: 23 pages, 10 figure
- âŚ