59 research outputs found

    Vertically Stratified Ash-Limb Beetle Fauna in Northern Ohio

    Get PDF
    To better understand the diversity and ecology of indigenous arthropods at risk from the invasive emerald ash borer (Agrilus planipennis Fairmaire) in North American forests, saproxylic beetles (Insecta: Coleoptera) were reared from ash (Fraxinus sp.) limbs suspended in the canopy, ~10–17 m above the ground, and from those placed on the ground in a mature mixed hardwood forest. In total, 209 specimens from 9 families and 18 species were collected from 30.0 m2 of limbs. The generalist cerambycid Neoclytus acuminatus (Fabricius) was the most commonly captured taxon, followed by an assemblage of four exotic ambrosia beetles dominated by Xylosandrus crassiusculus (Motschulsky). Two species largely or entirely restricted to ash, the buprestid Agrilus subcinctus Gory and the curculionid Hylesinus aculeatus (Say), were collected as well. Although there were no differences in beetle richness, abundance, or density between limb positions, community composition differed significantly. This can be largely attributed to phloem and wood-feeding species (i.e., Cerambycidae and Buprestidae) being more common in the suspended limbs and ambrosia beetles being more numerous on the forest floor. Possible explanations for these patterns are discussed

    Contents lists available at ScienceDirect Pedobiologia- International Journal of Soil Biology

    Get PDF
    jo u rn al homepage: www.elsevier.de/pedobi Impacts of emerald ash borer-induced tree mortality on leaf litter arthropods an

    Sex-specific genetic architecture in response to American and ketogenic diets

    Get PDF
    Background/objectives: There is a growing appreciation for individual responses to diet. In a previous study, mouse strain-specific responses to American and ketogenic diets were observed. In this study, we searched for genetic variants underlying differences in the responses to American and ketogenic diets between C57BL/6J (B6) and FVB/NJ (FVB) mouse strains. Results: Genetic mapping of fat and lean mass gain revealed QTLs on Chromosome (Chr) 1 at 191.6 Mb (Fmgq1) (P < 0.001, CI = 180.2–194.4 Mb), Chr5 at 73.7 Mb (Fmgq2, Lmgq1) (P < 0.001, CI = 66.1–76.6 Mb), and Chr7 at 40.5 Mb (Fmgq3) (P < 0.01, CI = 36.6–44.5 Mb). Analysis of serum HDL cholesterol concentration identified a significant (P < 0.001, CI = 160.6–176.1 Mb) QTL on Chr1 at 168.6 Mb (Hdlq1). Causal network inference suggests that HDL cholesterol and fat mass gain are both linked to Fmgq1. Conclusions: Strong sex effects were identified at both Fmgq2 and Lmgq1, which are also diet-dependent. Interestingly, Fmgq2 and Fmgq3 affect fat gain directly, while Fmgq1 influences fat gain directly and via an intermediate change in serum cholesterol. These results demonstrate how precision nutrition will be advanced through the integration of genetic variation and sex in physiological responses to diets varied in carbohydrate composition

    Improving Metabolic Health Through Precision Dietetics in Mice

    Get PDF
    The incidence of diet-induced metabolic disease has soared over the last half-century, despite national efforts to improve health through universal dietary recommendations. Studies comparing dietary patterns of populations with health outcomes have historically provided the basis for healthy diet recommendations. However, evidence that population-level diet responses are reliable indicators of responses across individuals is lacking. This study investigated how genetic differences influence health responses to several popular diets in mice, which are similar to humans in genetic composition and the propensity to develop metabolic disease, but enable precise genetic and environmental control. We designed four human-comparable mouse diets that are representative of those eaten by historical human populations. Across four genetically distinct inbred mouse strains, we compared the American diet’s impact on metabolic health to three alternative diets (Mediterranean, Japanese, and Maasai/ketogenic). Furthermore, we investigated metabolomic and epigenetic alterations associated with diet response. Health effects of the diets were highly dependent on genetic background, demonstrating that individualized diet strategies improve health outcomes in mice. If similar genetic-dependent diet responses exist in humans, then a personalized, or “precision dietetics,” approach to dietary recommendations may yield better health outcomes than the traditional one-size-fits-all approach

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Food, Stress, and Reproduction: Short-Term Fasting Alters Endocrine Physiology and Reproductive Behavior in the Zebra Finch

    No full text
    Stress is thought to be a potent suppressor of reproduction. However, the vast majority of studies focus on the relationship between chronic stress and reproductive suppression, despite the fact that chronic stress is rare in the wild. We investigated the role of fasting in altering acute stress physiology, reproductive physiology, and reproductive behavior of male zebra finches (Taeniopygia guttata) with several goals in mind. First, we wanted to determine if acute fasting could stimulate an increase in plasma corticosterone and a decrease in corticosteroid binding globulin (CBG) and testosterone. We then investigated whether fasting could alter expression of undirected song and courtship behavior. After subjecting males to fasting periods ranging from 1 to 10. h, we collected plasma to measure corticosterone, CBG, and testosterone. We found that plasma corticosterone was elevated, and testosterone was decreased after 4, 6, and 10. h of fasting periods compared with samples collected from the same males during nonfasted (control) periods. CBG was lower than control levels only after 10. h of fasting. We also found that, coincident with these endocrine changes, males sang less and courted females less vigorously following short-term fasting relative to control conditions. Our data demonstrate that acute fasting resulted in rapid changes in endocrine physiology consistent with hypothalamo-pituitary-adrenal axis activation and hypothalamo-pituitary-gonadal axis deactivation. Fasting also inhibited reproductive behavior. We suggest that zebra finches exhibit physiological and behavioral flexibility that makes them an excellent model system for studying interactions of acute stress and reproduction. © 2010 Elsevier Inc

    Sex-specific genetic architecture in response to American and ketogenic diets

    Get PDF
    BACKGROUND/OBJECTIVES: There is a growing appreciation for individual responses to diet. In a previous study, mouse strain-specific responses to American and ketogenic diets were observed. In this study, we searched for genetic variants underlying differences in the responses to American and ketogenic diets between C57BL/6J (B6) and FVB/NJ (FVB) mouse strains. RESULTS: Genetic mapping of fat and lean mass gain revealed QTLs on Chromosome (Chr) 1 at 191.6 Mb (Fmgq1) (P < 0.001, CI = 180.2–194.4 Mb), Chr5 at 73.7 Mb (Fmgq2, Lmgq1) (P < 0.001, CI = 66.1–76.6 Mb), and Chr7 at 40.5 Mb (Fmgq3) (P < 0.01, CI = 36.6–44.5 Mb). Analysis of serum HDL cholesterol concentration identified a significant (P < 0.001, CI = 160.6–176.1 Mb) QTL on Chr1 at 168.6 Mb (Hdlq1). Causal network inference suggests that HDL cholesterol and fat mass gain are both linked to Fmgq1. CONCLUSIONS: Strong sex effects were identified at both Fmgq2 and Lmgq1, which are also diet-dependent. Interestingly, Fmgq2 and Fmgq3 affect fat gain directly, while Fmgq1 influences fat gain directly and via an intermediate change in serum cholesterol. These results demonstrate how precision nutrition will be advanced through the integration of genetic variation and sex in physiological responses to diets varied in carbohydrate composition
    corecore