1,257 research outputs found

    Computer assisted time series analysis (CATSA)

    Get PDF
    Computer assisted time series analysis (CATSA

    Inverse opal ceria–zirconia: architectural engineering for heterogeneous catalysis

    Get PDF
    The application of inverse opal structured materials is extended to the ceria–zirconia (Ce_(0.5)Zr_(0.5)O_2) system and the significance of material architecture on heterogeneous catalysis, specifically, chemical oxidation, is examined

    Messenger RNA coding for only the alpha subunit of the rat brain Na channel is sufficient for expression of functional channels in Xenopus oocytes

    Get PDF
    Several cDNA clones coding for the high molecular weight (alpha) subunit of the voltage-sensitive Na channel have been selected by immunoscreening a rat brain cDNA library constructed in the expression vector lambda gt11. As will be reported elsewhere, the amino acid sequence translated from the DNA sequence shows considerable homology to that reported for the Electrophorus electricus electroplax Na channel. Several of the cDNA inserts hybridized with a low-abundance 9-kilobase RNA species from rat brain, muscle, and heart. Sucrose-gradient fractionation of rat brain poly(A) RNA yielded a high molecular weight fraction containing this mRNA, which resulted in functional Na channels when injected into oocytes. This fraction contained undetectable amounts of low molecular weight RNA. The high molecular weight Na channel RNA was selected from rat brain poly(A) RNA by hybridization to a single-strand antisense cDNA clone. Translation of this RNA in Xenopus oocytes resulted in the appearance of tetrodotoxin-sensitive voltage-sensitive Na channels in the oocyte membrane. These results demonstrate that mRNA encoding the alpha subunit of the rat brain Na channel, in the absence of any beta-subunit mRNA, is sufficient for translation to give functional channels in oocytes

    Evidence for Infanticide in Bottlenose Dolphins of the Western North Atlantic

    Get PDF
    Nine bottlenose dolphin (Tursiops truncatus) calves that stranded in Virginia in 1996 and 1997 died of severe blunt-force trauma. Injuries were concentrated on the head and chest and multiple rib fractures, lung lacerations, and soft tissue contusions were prominent. Skeletal and/or soft tissue trauma occurred bilaterally in all of the calves. One had a bite wound across the left mandible that exhibited deep punctures consistent with the tooth placement in an adult bottlenose dolphin. The lesions were not compatible with predation, boat strike, fisheries interactions, rough-surf injury, or blast injury. However, they were similar to traumatic injuries described in stranded bottlenose dolphin calves and harbor porpoises (Phocoena phocoena) in Great Britain attributed to violent dolphin interactions. The evidence suggests that violent dolphin behavior was the cause of the trauma in the nine calves reported here and that infanticide occurs in bottlenose dolphins of the western North Atlantic

    Variation of the Jovian Magnetopause Under Constant Solar Wind Conditions: Significance of Magnetodisc Dynamics

    Get PDF
    It is generally believed that variations in the upstream solar wind (SW) and interplanetary magnetic field (IMF) conditions are the main cause of changes of Jupiter's magnetopause (JM) location. However, most previous pressure balance models for the JM are axisymmetric and do not consider internal drivers, for example, the dynamics of the magnetodisc. We use three-dimensional global magnetosphere simulations to investigate the variation of the JM under constant SW/IMF conditions. These simulations show that even without variations in the upstream driving conditions, the JM can exhibit dynamic variations, suggesting a range as large as 50 Jupiter radii in the subsolar location. Our study shows that the interchange structures in the Jovian magnetodisc will introduce significant radial dynamic pressure, which can drive significant variation in the JM location. The results provide important new context for interpreting the JM location and dynamics, with key implications for other internally mass-loaded and/or rapidly rotating systems
    corecore