1,944 research outputs found

    The structure of Rph, an exoribonuclease from Bacillus anthracis, at 1.7 angstrom resolution

    Get PDF
    Maturation of tRNA precursors into functional tRNA molecules requires trimming of the primary transcript at both the 5' and 3' ends. Cleavage of nucleotides from the 3' stem of tRNA precursors, releasing nucleotide diphosphates, is accomplished in Bacillus by a phosphate-dependent exoribonuclease, Rph. The crystal structure of this enzyme from B. anthracis has been solved by molecular replacement to a resolution of 1.7 angstrom and refined to an R factor of 19.3%. There is one molecule in the asymmetric unit; the crystal packing reveals the assembly of the protein into a hexamer arranged as a trimer of dimers. The structure shows two sulfate ions bound in the active-site pocket, probably mimicking the phosphate substrate and the phosphate of the 3'-terminal nucleotide of the tRNA precursor. Three other bound sulfate ions point to likely RNA-binding sites

    The crystal structure of superoxide dismutase from Plasmodium falciparum

    Get PDF
    Background: Superoxide dismutases (SODs) are important enzymes in defence against oxidative stress. In Plasmodium falciparum, they may be expected to have special significance since part of the parasite life cycle is spent in red blood cells where the formation of reactive oxygen species is likely to be promoted by the products of haemoglobin breakdown. Thus, inhibitors of P. falciparum SODs have potential as anti-malarial compounds. As a step towards their development we have determined the crystal structure of the parasite's cytosolic iron superoxide dismutase. Results: The cytosolic iron superoxide dismutase from P. falciparum (PfFeSOD) has been overexpressed in E. coli in a catalytically active form. Its crystal structure has been solved by molecular replacement and refined against data extending to 2.5 angstrom resolution. The structure reveals a two-domain organisation and an iron centre in which the metal is coordinated by three histidines, an aspartate and a solvent molecule. Consistent with ultracentrifugation analysis the enzyme is a dimer in which a hydrogen bonding lattice links the two active centres. Conclusion: The tertiary structure of PfFeSOD is very similar to those of a number of other iron-and manganese-dependent superoxide dismutases, moreover the active site residues are conserved suggesting a common mechanism of action. Comparison of the dimer interfaces of PfFeSOD with the human manganese-dependent superoxide dismutase reveals a number of differences, which may underpin the design of parasite-selective superoxide dismutase inhibitors

    Elevated matrix metalloproteinase concentrations offer novel insight into their role in pediatric tuberculous meningitis

    Get PDF
    We collected lumbar and ventricular cerebrospinal fluid and serum from 40 children treated for tuberculous meningitis and measured the concentrations of gelatinases and their inhibitors. The concentrations of matrix metalloproteinase 9 (MMP-9), MMP-2, tissue inhibitor of metalloproteinase 1 (TIMP-1), and TIMP-2 were significantly elevated in the lumbar CSF samples, and we found interesting dynamics for MMP-9 that offer novel insight into its role in pediatric patients with tuberculous meningitis

    Micromanipulation of InP lasers with optoelectronic tweezers for integration on a photonic platform

    Get PDF
    The integration of light sources on a photonic platform is a key aspect of the fabrication of self-contained photonic circuits with a small footprint that does not have a definitive solution yet. Several approaches are being actively researched for this purpose. In this work we propose optoelectronic tweezers for the manipulation and integration of light sources on a photonic platform and report the positional and angular accuracy of the micromanipulation of standard Fabry-Pérot InP semiconductor laser die. These lasers are over three orders of magnitude bigger in volume than any previously assembled with optofluidic techniques and the fact that they are industry standard lasers makes them significantly more useful than previously assembled microdisk lasers. We measure the accuracy to be 2.5 ± 1.4 µm and 1.4 ± 0.4° and conclude that optoelectronic tweezers are a promising technique for the micromanipulation and integration of optoelectronic components in general and semiconductor lasers in particular

    Morphogenic protein rodz interacts with sporulation specific spoiie in bacillus subtilis

    Get PDF
    The first landmark in sporulation of Bacillus subtilis is the formation of an asymmetric septum followed by selective activation of the transcription factor oσF in the resulting smaller cell. How the morphological transformations that occur during sporulation are coupled to cellspecific activation of transcription is largely unknown. The membrane protein SpoIIE is a constituent of the asymmetric sporulation septum and is a crucial determinant ofσF activation. Here we report that the morphogenic protein, RodZ, which is essential for cell shape determination, is additionally required for asymmetric septum formation and sporulation. In cells depleted of RodZ, formation of asymmetric septa is disturbed and oσF activation is perturbed. During sporulation, we found that SpoIIE recruits RodZ to the asymmetric septum. Moreover, we detected a direct interaction between SpoIIE and RodZ in vitro and in vivo, indicating that SpoIIE-RodZ may form a complex to coordinate asymmetric septum formation and oσF activation. We propose that RodZ could provide a link between the cell shape machinery and the coordinated morphological and developmental transitions required to form a resistant spore

    A non-invasive, home-based EEG hypoglycaemia warning system for personal monitoring using skin surface electrodes : a single-case feasibility study

    Get PDF
    Hypoglycaemia unawareness is a common condition associated with increased risk of severe hypoglycaemia. The purpose of the authors' study was to develop a simple to use, home-based and non-invasive hypoglycaemia warning system based on electroencephalography (EEG), and to demonstrate its use in a single-case feasibility study. Methods: A participant with type 1 diabetes forms a single-person case study where blood sugar levels and EEG were recorded. EEG was recorded using skin surface electrodes placed behind the ear located within the T3 region by the participant in the home. EEG was analysed retrospectively to develop an algorithm which would trigger a warning if EEG changes associated with hypoglycaemia onset were detected. Results: All hypoglycaemia events were detected by the EEG hypoglycaemia warning algorithm. Warnings were triggered with blood glucose concentration levels at or below 4.2 mmol/l in this participant and no warnings were issued when in euglycaemia. Conclusion: The feasibility of a non-invasive EEG-based hypoglycaemia warning system for personal monitoring in the home has been demonstrated in a single case study. The results suggest that further studies are warranted to evaluate the system prospectively in a larger group of participants

    Leishmania differentiation requires ubiquitin conjugation mediated by a UBC2-UEV1 E2 complex

    Get PDF
    Post-translational modifications such as ubiquitination are important for orchestrating the cellular transformations that occur as the Leishmania parasite differentiates between its main morphological forms, the promastigote and amastigote. 2 E1 ubiquitin-activating (E1), 13 E2 ubiquitin-conjugating (E2), 79 E3 ubiquitin ligase (E3) and 20 deubiquitinating cysteine peptidase (DUB) genes can be identified in the Leishmania mexicana genome but, currently, little is known about the role of E1, E2 and E3 enzymes in this parasite. Bar-seq analysis of 23 E1, E2 and HECT/RBR E3 null mutants generated in promastigotes using CRISPR-Cas9 revealed numerous loss-of-fitness phenotypes in promastigote to amastigote differentiation and mammalian infection. The E2s UBC1/CDC34, UBC2 and UEV1 and the HECT E3 ligase HECT2 are required for the successful transformation from promastigote to amastigote and UBA1b, UBC9, UBC14, HECT7 and HECT11 are required for normal proliferation during mouse infection. Of all ubiquitination enzyme null mutants examined in the screen, Δubc2 and Δuev1 exhibited the most extreme loss-of-fitness during differentiation. Null mutants could not be generated for the E1 UBA1a or the E2s UBC3, UBC7, UBC12 and UBC13, suggesting these genes are essential in promastigotes. X-ray crystal structure analysis of UBC2 and UEV1, orthologues of human UBE2N and UBE2V1/ UBE2V2 respectively, reveal a heterodimer with a highly conserved structure and interface. Furthermore, recombinant L. mexicana UBA1a can load ubiquitin onto UBC2, allowing UBC2-UEV1 to form K63-linked di-ubiquitin chains in vitro. Notably, UBC2 can cooperate in vitro with human E3s RNF8 and BIRC2 to form non-K63-linked polyubiquitin chains, showing that UBC2 can facilitate ubiquitination independent of UEV1, but association of UBC2 with UEV1 inhibits this ability. Our study demonstrates the dual essentiality of UBC2 and UEV1 in the differentiation and intracellular survival of L. mexicana and shows that the interaction between these two proteins is crucial for regulation of their ubiquitination activity and function

    Lipid spirals in Bacillus subtilis and their role in cell division

    Get PDF
    The fluid mosaic model of membrane structure has been revised in recent years as it has become evident that domains of different lipid composition are present in eukaryotic and prokaryotic cells. Using membrane binding fluorescent dyes, we demonstrate the presence of lipid spirals extending along the long axis of cells of the rod-shaped bacterium Bacillus subtilis. These spiral structures are absent from cells in which the synthesis of phosphatidylglycerol is disrupted, suggesting an enrichment in anionic phospholipids. Green fluorescent protein fusions of the cell division protein MinD also form spiral structures and these were shown by fluorescence resonance energy transfer to be coincident with the lipid spirals. These data indicate a higher level of membrane lipid organization than previously observed and a primary role for lipid spirals in determining the site of cell division in bacterial cells

    Drug discovery in leishmaniasis using protein lipidation as a target

    Get PDF
    The leishmaniases are infectious diseases caused by a number of species of obligate intracellular protozoa of the genus Leishmania with disease manifesting as cutaneous, mucocutaneous and visceral forms. Despite being endemic in more than 80 countries and its being the cause of high morbidity and mortality, leishmaniasis remains a neglected tropical disease. Chemotherapy is the frontline treatment, but drugs in current use suffer from toxic side effects, difficulties in administration and extended treatment times — moreover, resistance is emerging. New anti-leishmanial drugs are a recognised international priority. Here, we review investigations into N-myristoyltransferase (NMT) as a potential drug target. NMT catalyses the co-translational transfer of a C14 fatty acid from myristoyl-CoA onto the N-terminal glycine residue of a significant subset of proteins in eukaryotic cells. This covalent modification influences the stability and interactions of substrate proteins with lipids and partner proteins. Structure-guided development of new lead compounds emerging from high-throughput screening campaigns targeting Leishmania donovani NMT has led to the discovery of potent inhibitors which have been used to gain insights into the role of protein myristoylation in these parasites and to validate NMT as a drug target
    corecore