2,487 research outputs found
Recommended from our members
Neural processing of imminent collision in humans
Detecting a looming object and its imminent collision is imperative to survival. For most humans, it is a fundamental aspect of daily activities such as driving, road crossing and participating in sport, yet little is known about how the brain both detects and responds to such stimuli. Here we use functional magnetic resonance imaging to assess neural response to looming stimuli in comparison with receding stimuli and motion-controlled static stimuli. We demonstrate for the first time that, in the human, the superior colliculus and the pulvinar nucleus of the thalamus respond to looming in addition to cortical regions associated with motor preparation. We also implicate the anterior insula in making timing computations for collision events
Exact norm-conserving stochastic time-dependent Hartree-Fock
We derive an exact single-body decomposition of the time-dependent
Schroedinger equation for N pairwise-interacting fermions. Each fermion obeys a
stochastic time-dependent norm-preserving wave equation. As a first test of the
method we calculate the low energy spectrum of Helium. An extension of the
method to bosons is outlined.Comment: 21 pages, 3 figures, LaTeX fil
On Recurrent Reachability for Continuous Linear Dynamical Systems
The continuous evolution of a wide variety of systems, including
continuous-time Markov chains and linear hybrid automata, can be described in
terms of linear differential equations. In this paper we study the decision
problem of whether the solution of a system of linear
differential equations reaches a target
halfspace infinitely often. This recurrent reachability problem can
equivalently be formulated as the following Infinite Zeros Problem: does a
real-valued function satisfying a
given linear differential equation have infinitely many zeros? Our main
decidability result is that if the differential equation has order at most ,
then the Infinite Zeros Problem is decidable. On the other hand, we show that a
decision procedure for the Infinite Zeros Problem at order (and above)
would entail a major breakthrough in Diophantine Approximation, specifically an
algorithm for computing the Lagrange constants of arbitrary real algebraic
numbers to arbitrary precision.Comment: Full version of paper at LICS'1
Thermal degradation of Cross-Linked Polyisoprene and Polychloroprene
Polyisoprene and polychloroprene have been cross-linked either in solution or in solid state using free radical initiators. In the comparable experimental conditions higher cross-linking density was observed in the solid state process. Independent of the cross-linking method, polychloroprene tended to give a higher gel content and cross-link density than does polyisoprene. Infrared characterization of the cross-linked materials showed cis-trans isomerization occurred in the polyisoprene initiated by benzoyl peroxide, whereas no isomerization was found in the samples initiated by dicumyl peroxide. Polyisoprene does not cross-link by heating in a thermal analyzer, whereas polychloroprene easily undergoes cross-linking in such conditions. Infrared spectroscopy showed that in the case of polyisoprene, rearrangements occur upon heating which lead to the formation of terminal double bonds, while polychloroprene loses hydrogen chlorine which leads to a conjugated structure. There is apparently some enhancement of the thermal and thermal oxidative stability of polyisoprene because of the cross-linking. Cross-linked polychloroprene is less thermally stable than the virgin polymer. Cross-linking promotes polymers charring in the main step of weight loss in air, which leads to enhanced transitory char
When is Quantum Decoherence Dynamics Classical?
A direct classical analog of quantum decoherence is introduced. Similarities
and differences between decoherence dynamics examined quantum mechanically and
classically are exposed via a second-order perturbative treatment and via a
strong decoherence theory, showing a strong dependence on the nature of the
system-environment coupling. For example, for the traditionally assumed linear
coupling, the classical and quantum results are shown to be in exact agreement.Comment: 5 pages, no figures, to appear in Physical Review Letter
Suppression of decoherence via strong intra-environmental coupling
We examine the effects of intra-environmental coupling on decoherence by
constructing a low temperature spin--spin-bath model of an atomic impurity in a
Debye crystal. The impurity interacts with phonons of the crystal through
anti-ferromagnetic spin-spin interactions. The reduced density matrix of the
central spin representing the impurity is calculated by dynamically integrating
the full Schroedinger equation for the spin--spin-bath model for different
thermally weighted eigenstates of the spin-bath. Exact numerical results show
that increasing the intra-environmental coupling results in suppression of
decoherence. This effect could play an important role in the construction of
solid state quantum devices such as quantum computers.Comment: 4 pages, 3 figures, Revtex fil
“some kind of thing it aint us but yet its in us”: David Mitchell, Russell Hoban, and metafiction after the millennium
This article appraises the debt that David Mitchell’s Cloud Atlas owes to the novels of Russell Hoban, including, but not limited to, Riddley Walker. After clearly mapping a history of Hoban’s philosophical perspectives and Mitchell’s inter-textual genre-impersonation practice, the article assesses the degree to which Mitchell’s metatextual methods indicate a nostalgia for by-gone radical aesthetics rather than reaching for new modes of its own. The article not only proposes several new backdrops against which Mitchell’s novel can be read but also conducts the first in-depth appraisal of Mitchell’s formal linguistic replication of Riddley Walker
First-principles quantum dynamics in interacting Bose gases I: The positive P representation
The performance of the positive P phase-space representation for exact
many-body quantum dynamics is investigated. Gases of interacting bosons are
considered, where the full quantum equations to simulate are of a
Gross-Pitaevskii form with added Gaussian noise. This method gives tractable
simulations of many-body systems because the number of variables scales
linearly with the spatial lattice size. An expression for the useful simulation
time is obtained, and checked in numerical simulations. The dynamics of first-,
second- and third-order spatial correlations are calculated for a uniform
interacting 1D Bose gas subjected to a change in scattering length. Propagation
of correlations is seen. A comparison is made to other recent methods. The
positive P method is particularly well suited to open systems as no
conservation laws are hard-wired into the calculation. It also differs from
most other recent approaches in that there is no truncation of any kind.Comment: 21 pages, 7 figures, 2 tables, IOP styl
Intrinsic Decoherence Dynamics in Smooth Hamiltonian Systems: Quantum-classical Correspondence
A direct classical analog of the quantum dynamics of intrinsic decoherence in
Hamiltonian systems, characterized by the time dependence of the linear entropy
of the reduced density operator, is introduced. The similarities and
differences between the classical and quantum decoherence dynamics of an
initial quantum state are exposed using both analytical and computational
results. In particular, the classicality of early-time intrinsic decoherence
dynamics is explored analytically using a second-order perturbative treatment,
and an interesting connection between decoherence rates and the stability
nature of classical trajectories is revealed in a simple approximate classical
theory of intrinsic decoherence dynamics. The results offer new insights into
decoherence, dynamics of quantum entanglement, and quantum chaos.Comment: 12 pages, 7 figures, to appear in Physical Review
- …