23 research outputs found

    Kelvin waves and internal bores in the marine boundary layer inversion and their relationship to coastally trapped wind reversals

    Get PDF
    Detailed observations of a coastally trapped disturbance, or wind reversal, on 10-11 June 1994 along the California coast provide comprehensive documentation of its structure, based on aircraft, wind profiler, radio acoustic sounding system, and buoy measurements. Unlike the expectations from earlier studies based on limited data, which concluded that the deepening of the marine boundary layer (MBL) was a key factor, the 1994 data show that the perturbation was better characterized as an upward thickening of the inversion capping the MBL. As the event propagated over a site, the reversal in the alongshore wind direction occurred first within the inversion and then 3-4 h later at the surface. A node in the vertical structure (defined here as the altitude of zero vertical displacement) is found just above the inversion base, with up to 200-m upward displacements of isentropic surfaces above the node, and 70-m downward displacements below. Although this is a single event, it is shown that the vertical structure observed is representative of most other coastally trapped wind reversals. This is determined by comparing a composite of the 10-11 June 1994 event, based on measurements at seven buoys, with surface pressure perturbations calculated from aircraft data. These results are compared to the composite of many events. In each case a weak pressure trough occurred between 2.4 and 4.0 h ahead of the surface wind reversal, and the pressure rose by 0.32-0.48 mb between the trough and the wind reversal. The pressure rise results from the cooling caused by the inversion's upward expansion. The propagation and structure of the event are shown to be best characterized as a mixed Kelvin wave-bore propagating within the inversion above the MBL, with the MBL acting as a quasi-rigid lower boundary. If the MBL is instead assumed to respond in unison with the inversion, then the theoretically predicted intrinsic phase speeds significantly exceed the observed intrinsic phase speed. The hybrid nature of the event is indicated by two primary characteristics: 1) the disturbance had a much shallower slope than expected for an internal bore, while at the same time the upward perturbation within the inversion was quasi-permanent rather than sinusoidal, which more closely resembles a bore; and 2) the predicted phase speeds for the "solitary" form of nonlinear Kelvin wave and for an internal bore are both close to the observed intrinsic phase speed

    MESOSCALE NUMERICAL MODELS: COST-EFFECTIVE INPUT TO DISPERSION PREDICTION SCHEMES

    No full text
    Dispersion schemes which utilise on-line transport weather data are in increasing use, to predict the concentration distribution of pollutants near an industrial source. In many cases, sharp transitions in plume transport and spread can occur downstream from the source owing to changes in wind directions and mixing properties. These may be observed using costly remote stations or estimated using a mesoscale numerical model. A two dimensional mixed layer numerical model is described and tested for a land-seabreeze scenario in the Cape Town area. Comparisons with previous observational are made. It is suggested that these numerical models be used to interpolate meteorological observations form the source, to the wider area influenced by industrial emissions

    On the surface energy balance closure at different temporal scales

    No full text
    Measurements of the surface energy fluxes (turbulent and radiative) and other ancillary atmospheric/soil parameters made in the Columbia River Basin (Oregon) in an area of complex terrain during a 10-month long portion of the second Wind Forecast Improvement Project (WFIP 2) field campaign are used to study the surface energy budget (SEB) and surface fluxes over different temporal scales. This study analyzes and discusses SEB closure based on half-hourly, daily, monthly, seasonal, and sub-annual (~10-month) temporal averages. The data were collected over all four seasons for different states of the underlying ground surface (dry, wet, and frozen). Our half-hourly direct measurements of energy balance show that the sum of the turbulent sensible and latent heat fluxes systematically underestimate positive net radiation by around 20\u201330% during daytime and overestimate negative net radiation at night. This imbalance of the surface energy budget is comparable to other terrestrial sites. However, on average, the residual energy imbalance is significantly reduced at daily, weekly, and monthly averaging timescales, and moreover, the SEB can be closed for this site within reasonable limits on seasonal and sub-annual timescales (311-day averaging for the entire field campaign dataset). Increasing the averaging time to daily and longer time intervals substantially reduces the ground heat flux and storage terms, because energy locally entering the soil, air column, and vegetation in the morning is released in the afternoon and evening. Averaging on daily to sub-annual timescales also reduces random instrumental measurement errors and other uncertainties as well as smooths out a hysteresis effect (phase lag) in the SEB relationship between different components. This study shows that SEB closure is better for dry soils compared to wet soils and the statistical dependence of the turbulent fluxes and net radiation for freezing soil surfaces appears weak, if not non-existent, apparently due to lack of the latent heat of fusion term in the traditional SEB equation

    Identification and characterization of persistent cold pool events from temperature and wind profilers in the Columbia River Basin

    No full text
    Cold pool events occur when deep layers of stable, cold air remain trapped in a valley or basin for multiple days, without mixing out from daytime heating. With large impacts on air quality, freezing events, and especially on wind energy production, they are often poorly forecast by modern mesoscale numerical weather prediction (NWP) models. Understanding the characteristics of cold pools is, therefore, important to provide more accurate forecasts. This study analyzes cold pool characteristics with data collected during the Second Wind Forecast Improvement Project (WFIP2), which took place in the Columbia River basin and Gorge of Oregon and Washington from fall 2015 until spring 2017. A subset of the instrumentation included three microwave radiometer profilers, six radar wind profilers with radio acoustic sounding systems, and seven sodars, which together provided seven sites with collocated vertical profiles of temperature, humidity, wind speed, and wind direction. Using these collocated observations, we developed a set of criteria to determine if a cold pool was present based on stability, wind speed, direction, and temporal continuity, and then developed an automated algorithm based on these criteria to identify all cold pool events over the 18 months of the field project. Characteristics of these events are described, including statistics of the wind speed distributions and profiles, stability conditions, cold pool depths, and descent rates of the cold pool top. The goal of this study is a better understanding of these characteristics and their processes to ultimately lead to improved physical parameterizations in NWP models, and consequently improve forecasts of cold pool events in the study region as well at other locations that experiences similar events

    Occurrence of N-nitrosamines in Alberta public drinking-water distribution systems

    No full text
    Since the 1974 discovery of trihalomethanes as disinfection by-products (DBPs) in drinking water, the regulatory and public health focus has been primarily directed at halogenated compounds, even though it is well established that chlorination and chloramination also produce non-halogenated DBPs. Specific halogenated DBPs that could reasonably explain the correlation of some adverse health outcomes with consumption of disinfected drinking water in a number of epidemiologic studies have yet to be identified. We therefore explored an emerging class of non-halogenated DBPs, N-nitrosamines, which warrant consideration given public health concerns regarding possible correlations of bladder cancer with exposure to chlorinated drinking water. We developed a dual media (Ambersorb¼ 572 and LiChrolut¼ EN), off-line, solid-phase extraction method that utilized a modified commercially-available extraction manifold combined with our previous GC–MS ammonia positive chemical ionization (PCI) quantitative method for analyzing N-nitrosamines in drinking water. We surveyed 20 Alberta municipal drinking-water distribution systems for the presence of N-nitrosodimethylamine (NDMA) and seven other N-nitrosamine species. Analytical results revealed the occurrence of NDMA (up to 100 ng/L) as well as two other N-nitrosamines (N-nitrosopyrrolidine and N-nitrosomorpholine) within select Alberta drinking water supplies.Key words: Alberta, chloramination, disinfection by-products, distribution system, drinking water, N-nitrosamines, NDMA, public health, survey

    The second wind forecast improvement project (wfip2) observational field campaign

    No full text
    The Second Wind Forecast Improvement Project (WFIP2) is a U.S. Department of Energy (DOE)- and National Oceanic and Atmospheric Administration (NOAA)-funded program, with private-sector and university partners, which aims to improve the accuracy of numerical weather prediction (NWP) model forecasts of wind speed in complex terrain for wind energy applications. A core component of WFIP2 was an 18-month field campaign that took place in the U.S. Pacific Northwest between October 2015 and March 2017. A large suite of instrumentation was deployed in a series of telescoping arrays, ranging from 500 km across to a densely instrumented 2 km x 2 km area similar in size to a high-resolution NWP model grid cell. Observations from these instruments are being used to improve our understanding of the meteorological phenomena that affect wind energy production in complex terrain and to evaluate and improve model physical parameterization schemes. We present several brief case studies using these observations to describe phenomena that are routinely difficult to forecast, including wintertime cold pools, diurnally driven gap flows, and mountain waves/wakes. Observing system and data product improvements developed during WFIP2 are also described
    corecore