8 research outputs found

    Characterization of a Legionella pneumophila gene encoding a lipoprotein antigen

    Full text link
    A prominent 19kDa surface antigen of Legionella pneumophila , cloned in Escherichia coli , was found to be intimately associated with peptidoglycan. The DNA region encoding this antigen was mapped on an 11.9kb plasmid by means of deletion analysis and transposon mutagenesis. PhoA + gene fusions, generated by Tn phoA insertions into this region, confirmed the presence of a gene encoding a secreted protein. PhoA + transposon insertions were also associated with loss of the 19 kDa antigen in immunoassay s using a monoclonal antibody (mAb1E9) and the replacement of the 19kDa antigen with larger fusion proteins in immunoblots using Legionella immune serum. A 1540bp PstI fragment carrying the gene was sequenced, and the open reading frame encoding the antigen was identified. The gene encodes a polypeptide 176 amino acid residues long and 18913Da in size. The presence of a signal sequence of 22 amino acids with a consensus sequence for cleavage by signal peptidase II indicates that the antigen is a lipoprotein, and striking similarity with peptidoglycan-associated lipoproteins (PALs) from E. coli (51% amino acid homology) and Haemophilus influenzae (55% homology) is noted. We conclude that the 19kDa antigen of L. pneumophila is the structural equivalent of the PAL found in other Gram-negative species and suggest that its post-translational acylation may explain its potency as an immunogen.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75712/1/j.1365-2958.1991.tb00824.x.pd

    The activity of lipopeptide TLR2 agonists critically depends on the presence of solubilizers.

    No full text
    Item does not contain fulltextLipoproteins activate cells of the innate immune system via heteromers of Toll-like receptor (TLR) 2 with either TLR1 or TLR6. In spite of progress in understanding TLR-dependent signal transduction and the pathophysiological relevance of TLR2, the molecular basis of ligand recognition by this receptor is poorly defined. Here, we show that the bioactivity of lipopeptides (LP) critically depends on the dilution protocol and especially the presence of proteins or detergents acting as solubilizers. Fluorescence correlation spectroscopy of fluorescently labeled analogs of synthetic LP revealed that the LP form aggregates in solution. Dilution into protein- and serum-free buffers led to a complete loss of activity due to formation of large and highly heterogeneous aggregates. When dimethylsulfoxide stock solutions were diluted into BSA or serum-containing buffers particles of strongly reduced size were obtained. For some LP, an intermediary dilution step either with tert.-butyl alcohol/H2O (4:1) or with octyl-beta-D-glucopyranoside further increased activity. For a panel of LP exhibiting very different activities when diluted directly into protein-containing solutions, introduction of this dilution step resulted in comparable bioactivities. These results demonstrate the significance of solubilizing agents for the bioactivity of LP and are highly relevant for analyzing structure-activity relationships of LP-dependent TLR2 activation

    Lipolanthionine peptides act as inhibitors of TLR2-mediated IL-8 secretion. Synthesis and structure-activity relationships.

    No full text
    Item does not contain fulltextLipoproteins from gram-positive and -negative bacteria, mycoplasma, and shorter synthetic lipopeptide analogues activate cells of the innate immune system via the Toll-like receptor TLR2/TLR1 or TLR2/TLR6 heterodimers. For this reason, these compounds constitute highly active adjuvants for vaccines either admixed or covalently linked. The lanthionine scaffold has structural similarity with the S-(2,3-dihydroxypropyl)cysteine core structure of the lipopeptides. Therefore, lanthionine-based lipopeptide amides were synthesized and probed for activity as potential TLR2 agonists or antagonists. A collection of analytically defined lipolanthionine peptide amides exhibited an inhibitory effect of the TLR2-mediated IL-8 secretion when applied in high molar excess to the agonistic synthetic lipopeptide Pam3Cys-Ser-(Lys)4-OH. Structure-activity relationships revealed the influence of the chirality of the two alpha-carbon atoms, the chain lengths of the attached fatty acids and fatty amines, and the oxidation level of the sulfur atom on the inhibitory activity of the lipolanthionine peptide amides

    A fluorescence-based synthetic LPS sensor.

    No full text
    Item does not contain fulltextFor the detection of bioanalytes, there is an ongoing search for synthetic sensors to replace enzyme-based assays which are sensitive to contaminants or suboptimal storage conditions. Lipopolysaccharide (LPS), a bacteria-borne endotoxin that may lead to life-threatening conditions such as septic shock, is one such case. Fluorescently labeled analogues of two peptide variants derived from the putative ligand-binding domain of the LPS-binding protein CD14 were developed that detect and discriminate LPS and lipids down to the submicromolar concentration range. Peptides are terminally labeled with carboxyfluorescein and tetramethylrhodamine. For one given peptide, sensitivity and specificity for the detection of LPS and discrimination from other lipids are achieved by spectral signatures that combine changes in the fluorescence resonance energy transfer (FRET) between both dyes and the total emission of tetramethylrhodamine. Alternatively, specificity is obtained by combining the FRET efficiencies of both peptide variants. In comparison to published synthetic LPS sensors, the CD14-derived sensors yield an increase in sensitivity by about 3 orders of magnitude and exhibit specificity for analytes for which the design of synthetic recognition elements is a challenging task. Moreover, one of the sensors enabled the detection of LPS in the presence of up to 50% fetal calf serum, thereby demonstrating the feasibility of this peptide-based approach for clinically relevant samples

    A CD14 domain with lipopolysaccharide-binding and -neutralizing activity.

    No full text
    Item does not contain fulltextThe interaction of lipopolysaccharide with CD14 plays a key role in signaling that activates an early defense against pathogens but also contributes to the development of sepsis and septic shock. Here we have mapped the entire 356-amino-acid protein with synthetic 20-amino-acid peptides and have identified a new lipopolysaccharide-binding domain with a strong LPS-neutralizing activity. Moreover, analysis of the structure-activity relationship of this peptide, which corresponds to amino acids 81-100 of human CD14, revealed that leucines 87, 91, and 94 are essential for these activities. The functional relevance of these residues was confirmed by cellular expression of mutant CD14 proteins that are no longer able to bind LPS. Furthermore, the peptide provided a basis for the generation of highly soluble analogues with stronger lipopolysaccharide-neutralizing activity

    Diffusion along microfluidic channels.

    No full text
    Contains fulltext : 50761.pdf (publisher's version ) (Closed access

    A lipophilic adjuvant carrier system for antigenic peptides

    No full text
    A lipoamino acid based synthetic peptide, (Lipid Core Peptide, LCP) derived from the conserved region of group A streptococci (GAS) was evaluated as potential candidate in a vaccine to prevent GAS-associated diseases, including rheumatic heart disease and post-streptococcal acute glomerulonephritis. Multiple copies of a peptide sequence from the bacterial surface M protein were incorporated into a lipid core and it was used to immunize mice with and without the application of adjuvant. The LCP construct had significantly enhanced immunogenicity compared with the monomeric peptide epitope. Furthermore, the peptides incorporated into the LCP system generated antibodies without the use of any conventional adjuvant
    corecore