3 research outputs found

    Experimental observation of ion beams in the Madison Helicon eXperiment

    Get PDF
    Argon ion beams up to Eb=165 eV at Prf=500 W are observed in the Madison Helicon eXperiment (MadHeX) helicon source with a magnetic nozzle. A two-grid retarding potential analyzer (RPA) is used to measure the ion energy distribution, and emissive and rf-filtered Langmuir probes measure the plasma potential, electron density, and temperature. The supersonic ion beam (M=vi/cs up to 5) forms over tens of Debye lengths and extends spatially for a few ion-neutral charge-exchange mean free paths. The parametric variation of the ion beam energy is explored, including flow rate, rf power, and magnetic field dependence. The beam energy is equal to the difference in plasma potentials in the Pyrex chamber and the grounded expansion chamber. The plasma potential in the expansion chamber remains near the predicted eVp~5kTe for argon, but the upstream potential is much higher, likely due to wall charging, resulting in accelerated ion beam energies Eb=e[Vbeam-Vplasma]\u3e10kTe

    Observations of neutral depletion and plasma acceleration in a flowing high-power argon helicon plasma

    Get PDF
    Neutral depletion effects are observed in a steady-state flowing argon helicon plasma with a magnetic nozzle for high rf input powers (up to 3 kW). Noninvasive diagnostics including 105 GHz microwave interferometry and optical spectroscopy with collisional-radiative modeling are used to measure the electron density (ne), electron temperature (Te), and neutral density (nn). A region of weak neutral depletion is observed upstream of the antenna where increasing rf power leads to increased electron density (up to ne = 1.6×1013 cm-3) while Te remains essentially constant and low (1.7–2.0 eV). The downstream region exhibits profound neutral depletion (maximum 92% line-averaged ionization), where Te rises linearly with increasing rf power (up to 4.9 eV) and ne remains constrained (below 6.5×1012 cm-3). Flux considerations indicate accelerated plasma flow (Mach 0.24) through the antenna region due to an axial pressure gradient with reduced collisional drag from neutral depletion

    Ion acceleration in a helicon source due to the self-bias effect

    Get PDF
    Time-averaged plasma potential differences up to 165 V over several hundred Debye lengths are observed in low pressure (pn \u3c 1 mTorr) expanding argon plasmas in the Madison Helicon eXperiment (MadHeX). The potential gradient leads to ion acceleration greater than that predicted by ambipolar expansion, exceeding Ei≈7 kTe in some cases. RF power up to 500 W at 13.56 MHz is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field, adjustable up to 1 kG. A retarding potential analyzer (RPA) measures the ion energy distribution function (IEDF) and a swept emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in density as RF power is increased. In the capacitive (E) mode, large fluctuations of the plasma potential (Vp-p≥140V, Vp-p/Vp ≈ 150%) exist at the RF frequency and its harmonics. The more mobile electrons can easily respond to RF-timescale gradients in the plasma potential whereas the inertially constrained ions cannot, leading to an initial flux imbalance and formation of a self-bias voltage between the source and expansion chambers. In the capacitive mode, the ion acceleration is not well described by an ambipolar relation, while in the inductive and helicon modes the ion acceleration more closely follows an ambipolar relation. The scaling of the potential gradient with the argon flow rate and RF power are investigated, with the largest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees with that predicted for RF self-bias at a wall. Rapid fluctuations in the plasma potential result in a time-dependent axial electron flux that acts to neutralize the accelerated ion population, resulting in a zero net time-averaged current through the acceleration region when an insulating upstream boundary condition is enforced. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate
    corecore